Suppr超能文献

长程调控部分折叠的淀粉样肽。

Long-range Regulation of Partially Folded Amyloidogenic Peptides.

机构信息

Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.

出版信息

Sci Rep. 2020 May 5;10(1):7597. doi: 10.1038/s41598-020-64303-x.

Abstract

Neurodegeneration involves abnormal aggregation of intrinsically disordered amyloidogenic peptides (IDPs), usually mediated by hydrophobic protein-protein interactions. There is mounting evidence that formation of α-helical intermediates is an early event during self-assembly of amyloid-β42 (Aβ42) and α-synuclein (αS) IDPs in Alzheimer's and Parkinson's disease pathogenesis, respectively. However, the driving force behind on-pathway molecular assembly of partially folded helical monomers into helical oligomers assembly remains unknown. Here, we employ extensive molecular dynamics simulations to sample the helical conformational sub-spaces of monomeric peptides of both Aβ42 and αS. Our computed free energies, population shifts, and dynamic cross-correlation network analyses reveal a common feature of long-range intra-peptide modulation of partial helical folds of the amyloidogenic central hydrophobic domains via concerted coupling with their charged terminal tails (N-terminus of Aβ42 and C-terminus of αS). The absence of such inter-domain fluctuations in both fully helical and completely unfolded (disordered) states suggests that long-range coupling regulates the dynamicity of partially folded helices, in both Aβ42 and αS peptides. The inter-domain coupling suggests a form of intra-molecular allosteric regulation of the aggregation trigger in partially folded helical monomers. This approach could be applied to study the broad range of amyloidogenic peptides, which could provide a new path to curbing pathogenic aggregation of partially folded conformers into oligomers, by inhibition of sites far from the hydrophobic core.

摘要

神经退行性变涉及到内在无序的淀粉样肽(IDPs)的异常聚集,通常由疏水性蛋白-蛋白相互作用介导。越来越多的证据表明,在阿尔茨海默病和帕金森病发病机制中,β42 淀粉样蛋白(Aβ42)和α-突触核蛋白(αS)IDPs 的自组装过程中,形成α-螺旋中间体是早期事件。然而,部分折叠的螺旋单体到螺旋寡聚物组装的途径分子组装的驱动力仍然未知。在这里,我们采用广泛的分子动力学模拟来采样单体肽的螺旋构象子空间。我们计算的自由能、种群转移和动态互相关网络分析揭示了 Aβ42 和 αS 单体肽中,通过与带电荷的末端尾巴(Aβ42 的 N 端和 αS 的 C 端)的协同偶联,对中央疏水区的部分螺旋折叠进行长程的、跨肽内调制的共同特征。在完全螺旋和完全展开(无序)状态下,这种结构域间波动的缺失表明,长程偶联调节了 Aβ42 和 αS 肽中部分折叠螺旋的动力学。结构域间的偶联表明,在部分折叠的螺旋单体中,存在一种分子内变构调节聚集触发的形式。这种方法可以应用于研究广泛的淀粉样肽,通过抑制远离疏水区的位点,可能为抑制部分折叠构象进入寡聚物的致病性聚集提供新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/205e/7200734/a52510ee5d77/41598_2020_64303_Fig1_HTML.jpg

相似文献

1
Long-range Regulation of Partially Folded Amyloidogenic Peptides.
Sci Rep. 2020 May 5;10(1):7597. doi: 10.1038/s41598-020-64303-x.
2
Molecular Simulations Reveal Terminal Group Mediated Stabilization of Helical Conformers in Both Amyloid-β42 and α-Synuclein.
ACS Chem Neurosci. 2019 Jun 19;10(6):2830-2842. doi: 10.1021/acschemneuro.9b00053. Epub 2019 Apr 5.
3
Characterization of Amyloidogenic Peptide Aggregability in Helical Subspace.
Methods Mol Biol. 2022;2340:401-448. doi: 10.1007/978-1-0716-1546-1_18.
4
Characterization of the Conformations of Amyloid Beta 42 in Solution That May Mediate Its Initial Hydrophobic Aggregation.
J Phys Chem B. 2022 Oct 13;126(40):7916-7933. doi: 10.1021/acs.jpcb.2c04743. Epub 2022 Sep 30.
9
The neuronal S100B protein is a calcium-tuned suppressor of amyloid-β aggregation.
Sci Adv. 2018 Jun 29;4(6):eaaq1702. doi: 10.1126/sciadv.aaq1702. eCollection 2018 Jun.

引用本文的文献

2
On Levodopa Interactions with Brain Disease Amyloidogenic Proteins at the Nanoscale.
ACS Omega. 2025 Apr 2;10(14):14487-14495. doi: 10.1021/acsomega.5c01028. eCollection 2025 Apr 15.
3
Conformational Selection of α-Synuclein Tetramers at Biological Interfaces.
J Chem Inf Model. 2024 Oct 28;64(20):8010-8023. doi: 10.1021/acs.jcim.4c01459. Epub 2024 Oct 8.
4
Effect of an Amyloidogenic SARS-COV-2 Protein Fragment on α-Synuclein Monomers and Fibrils.
J Phys Chem B. 2022 May 26;126(20):3648-3658. doi: 10.1021/acs.jpcb.2c01254. Epub 2022 May 17.
5
Single-Particle Resolution of Copper-Associated Annular α-Synuclein Oligomers Reveals Potential Therapeutic Targets of Neurodegeneration.
ACS Chem Neurosci. 2022 May 4;13(9):1410-1421. doi: 10.1021/acschemneuro.2c00021. Epub 2022 Apr 12.

本文引用的文献

1
Effects of in vivo conditions on amyloid aggregation.
Chem Soc Rev. 2019 Jul 15;48(14):3946-3996. doi: 10.1039/c8cs00034d.
2
Allostery in Its Many Disguises: From Theory to Applications.
Structure. 2019 Apr 2;27(4):566-578. doi: 10.1016/j.str.2019.01.003. Epub 2019 Feb 7.
3
Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases.
Nat Neurosci. 2018 Oct;21(10):1332-1340. doi: 10.1038/s41593-018-0235-9. Epub 2018 Sep 24.
4
Developing a molecular dynamics force field for both folded and disordered protein states.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4758-E4766. doi: 10.1073/pnas.1800690115. Epub 2018 May 7.
5
Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation.
J Mol Biol. 2018 Aug 3;430(16):2309-2320. doi: 10.1016/j.jmb.2018.04.003. Epub 2018 Apr 7.
6
CONAN: A Tool to Decode Dynamical Information from Molecular Interaction Maps.
Biophys J. 2018 Mar 27;114(6):1267-1273. doi: 10.1016/j.bpj.2018.01.033.
7
Multistep Conformation Selection in Amyloid Assembly.
J Am Chem Soc. 2017 Nov 29;139(47):17007-17010. doi: 10.1021/jacs.7b09362. Epub 2017 Nov 15.
9
Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins.
Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14020-14024. doi: 10.1002/anie.201706740. Epub 2017 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验