Suppr超能文献

迈向精神分裂症临床可操作的数字表型目标

Towards clinically actionable digital phenotyping targets in schizophrenia.

作者信息

Henson Philip, Barnett Ian, Keshavan Matcheri, Torous John

机构信息

Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Division of Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

出版信息

NPJ Schizophr. 2020 May 5;6(1):13. doi: 10.1038/s41537-020-0100-1.

Abstract

Digital phenotyping has potential to quantify the lived experience of mental illness and generate real-time, actionable results related to recovery, such as the case of social rhythms in individuals with bipolar disorder. However, passive data features for social rhythm clinical targets in individuals with schizophrenia have yet to be studied. In this paper, we explore the relationship between active and passive data by focusing on temporal stability and variance at an individual level as well as large-scale associations on a population level to gain clinically actionable information regarding social rhythms. From individual data clustering, we found a 19% cluster overlap between specific active and passive data features for participants with schizophrenia. In the same clinical population, two passive data features in particular associated with social rhythms, "Circadian Routine" and "Weekend Day Routine," and were negatively associated with symptoms of anxiety, depression, psychosis, and poor sleep (Spearman ρ ranged from -0.23 to -0.30, p < 0.001). Conversely, in healthy controls, more stable social rhythms were positively correlated with symptomatology (Spearman ρ ranged from 0.20 to 0.44, p < 0.05). Our results suggest that digital phenotyping in schizophrenia may offer clinically relevant information for understanding how daily routines affect symptomatology. Specifically, negative correlations between smartphone reported anxiety, depression, psychosis, and poor sleep in individuals with schizophrenia, but not in healthy controls, offer an actionable clinical target and area for further investigation.

摘要

数字表型分析有潜力量化精神疾病的生活体验,并产生与康复相关的实时、可操作的结果,比如双相情感障碍患者的社会节律情况。然而,精神分裂症患者社会节律临床指标的被动数据特征尚未得到研究。在本文中,我们通过关注个体层面的时间稳定性和方差以及群体层面的大规模关联来探索主动数据和被动数据之间的关系,以获取有关社会节律的临床可操作信息。通过个体数据聚类,我们发现精神分裂症患者特定的主动和被动数据特征之间存在19%的聚类重叠。在同一临床群体中,有两个与社会节律特别相关的被动数据特征,即“昼夜节律”和“周末节律”,并且与焦虑、抑郁、精神病症状和睡眠不佳呈负相关(斯皮尔曼相关系数ρ范围为-0.23至-0.30,p<0.001)。相反,在健康对照组中,更稳定的社会节律与症状呈正相关(斯皮尔曼相关系数ρ范围为0.20至0.44,p<0.05)。我们的结果表明,精神分裂症的数字表型分析可能为理解日常活动如何影响症状提供临床相关信息。具体而言,精神分裂症患者(而非健康对照组)智能手机报告的焦虑、抑郁、精神病症状和睡眠不佳之间的负相关提供了一个可操作的临床靶点和进一步研究的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0766/7200667/b1b7b129e558/41537_2020_100_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验