Leung Wallace Woon-Fong, Sun Qiangqiang
Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
Sep Purif Technol. 2020 Aug 15;245:116887. doi: 10.1016/j.seppur.2020.116887. Epub 2020 Apr 22.
The novel coronavirus (COVID-19), average size 100 nm, can be aerosolized by cough, sneeze, speech and breath of infected persons. The airborne carrier for the COVID-19 can be tiny droplets and particulates from infected person, fine suspended mists (humidity) in air, or ambient aerosols in air. To-date, unfortunately there are no test standards for nano-aerosols (≤100 nm). A goal in our study is to develop air filters (e.g. respirator, facemask, ventilator, medical breathing filter/system) with 90% capture on 100-nm airborne COVID-19 with pressure drop of less than 30 Pa (3.1 mm water). There are two challenges. First, this airborne bio-nanoaerosol (combined virus and carrier) is amorphous unlike cubic NaCl crystals. Second, unlike standard laboratory tests on NaCl and test oil (DOP) droplets, these polydispersed aerosols all challenge the filter simultaneously and they are of different sizes and can interact among themselves complicating the filtration process. For the first time, we have studied these two effects using ambient aerosols (simulating the bio-nanoaerosols of coronavirus plus carrier of different shapes and sizes) to challenge electrostatically charged multilayer/multimodule nanofiber filters. This problem is fundamentally complicated due to mechanical and electrostatic interactions among aerosols of different sizes with induced charges of different magnitudes. The test filters were arranged in 2, 4, and 6 multiple-modules stack-up with each module having 0.765 g/m of charged PVDF nanofibers (mean diameter 525 ± 191 nm). This configuration minimized electrical interference among neighboring charged nanofibers and reduced flow resistance in the filter. For ambient aerosol size>80 nm (applicable to the smallest COVID-19), the electrostatic effect contributes 100-180% more efficiency to the existing mechanical efficiency (due to diffusion and interception) depending on the number of modules in the filter. By stacking-up modules to increase fiber basis weight in the filter, a 6-layer charged nanofiber filter achieved 88%, 88% and 96% filtration efficiency for, respectively, 55-nm, 100-nm and 300-nm ambient aerosol. This is very close to attaining our set goal of 90%-efficiency on the 100-nm ambient aerosol. The pressure drop for the 6-layer nanofiber filter was only 26 Pa (2.65 mm water column) which was below our limit of 30 Pa (3.1 mm water). For the test multi-module filters, a high 'quality factor' (efficiency-to-pressure-drop ratio) of about 0.1 to 0.13 Pa can be consistently maintained, which was far better than conventional filters. Using the same PVDF 6-layer charged nanofiber filter, laboratory tests results using monodispersed NaCl aerosols of 50, 100, and 300 nm yielded filtration efficiency, respectively, 92%, 94% and 98% (qualified for 'N98 standard') with same pressure drop of 26 Pa. The 2-6% discrepancy in efficiency for the NaCl aerosols was primarily attributed to the absence of interaction among aerosols of different sizes using monodispersed NaCl aerosols in the laboratory. This discrepancy can be further reduced with increasing number of modules in the filter and for larger 300-nm aerosol. The 6-layer charged nanofiber filter was qualified as a 'N98 respirator' (98% capture efficiency for 300-nm NaCl aerosols) but with pressure drop of only 2.65-mm water which was 1/10 below conventional N95 with 25-mm (exhaling) to 35-mm (inhaling) water column! The 6-layer charged PVDF nanofiber filter provides good personal protection against airborne COVID-19 virus and nano-aerosols from pollution based on the N98 standard, yet it is at least 10X more breathable than a conventional N95 respirator.
新型冠状病毒(COVID-19)的平均大小为100纳米,可通过感染者的咳嗽、打喷嚏、讲话和呼吸形成气溶胶。COVID-19的空气传播载体可以是来自感染者的微小液滴和微粒、空气中的细微悬浮雾气(湿度)或空气中的环境气溶胶。不幸的是,迄今为止,对于纳米气溶胶(≤100纳米)尚无测试标准。我们研究的一个目标是开发空气过滤器(如呼吸器、口罩、呼吸机、医用呼吸过滤器/系统),对100纳米的空气传播COVID-19的捕获率达到90%,压降小于30帕(3.1毫米水柱)。存在两个挑战。第一,这种空气传播的生物纳米气溶胶(病毒与载体结合)不像立方氯化钠晶体那样是晶体结构。第二,与对氯化钠和测试油(DOP)液滴进行的标准实验室测试不同,这些多分散气溶胶会同时对过滤器构成挑战,它们大小各异且会相互作用,使过滤过程变得复杂。我们首次使用环境气溶胶(模拟冠状病毒的生物纳米气溶胶以及不同形状和大小的载体)来挑战带静电的多层/多模块纳米纤维过滤器,研究了这两种效应。由于不同大小的气溶胶之间存在机械和静电相互作用,且带有不同大小的感应电荷,这个问题从根本上就很复杂。测试过滤器以2层、4层和6层多模块堆叠的形式排列,每个模块有0.765克/平方米的带电荷聚偏氟乙烯纳米纤维(平均直径525±191纳米)。这种配置使相邻带电荷纳米纤维之间的电干扰最小化,并降低了过滤器中的流动阻力。对于尺寸大于80纳米的环境气溶胶(适用于最小的COVID-19),根据过滤器中的模块数量,静电效应使现有机械效率(由于扩散和拦截)提高了100 - 180%。通过堆叠模块以增加过滤器中的纤维基重,一个6层带电荷纳米纤维过滤器对55纳米、100纳米和300纳米的环境气溶胶的过滤效率分别达到了88%、88%和96%。这非常接近我们设定的对100纳米环境气溶胶达到90%效率的目标。6层纳米纤维过滤器的压降仅为26帕(2.65毫米水柱),低于我们30帕(3.1毫米水柱)的限制。对于测试的多模块过滤器,大约0.1至0.13帕的高“品质因数”(效率与压降之比)可以持续保持,这比传统过滤器要好得多。使用相同的6层带电荷聚偏氟乙烯纳米纤维过滤器,对50纳米;100纳米和300纳米的单分散氯化钠气溶胶进行实验室测试,结果过滤效率分别为92%、94%和98%(符合“N98标准”),压降相同,均为26帕。氯化钠气溶胶效率上2 - 6%的差异主要归因于实验室中使用单分散氯化钠气溶胶时不同大小的气溶胶之间不存在相互作用。随着过滤器中模块数量的增加以及对于更大的300纳米气溶胶,这种差异可以进一步减小。6层带电荷纳米纤维过滤器符合“N98呼吸器”标准(对300纳米氯化钠气溶胶的捕获效率为98%),但压降仅为2.65毫米水柱,比传统N95呼吸器(呼气时25毫米水柱至吸气时35毫米水柱)低十分之一!基于N98标准,6层带电荷聚偏氟乙烯纳米纤维过滤器能有效防护空气中的COVID-19病毒和来自污染的纳米气溶胶,但其透气性至少是传统N95呼吸器的10倍。