Suppr超能文献

基于遗传和信号通路分析的蛛网膜下腔出血早期预测模型的开发

Development of an Early Prediction Model for Subarachnoid Hemorrhage With Genetic and Signaling Pathway Analysis.

作者信息

Lei Wanjing, Zeng Han, Feng Hua, Ru Xufang, Li Qiang, Xiao Ming, Zheng Huiru, Chen Yujie, Zhang Le

机构信息

College of Computer Science, Sichuan University, Chengdu, China.

College of Computer and Information Science, Southwest University, Chongqing, China.

出版信息

Front Genet. 2020 Apr 21;11:391. doi: 10.3389/fgene.2020.00391. eCollection 2020.

Abstract

Subarachnoid hemorrhage (SAH) is devastating disease with high mortality, high disability rate, and poor clinical prognosis. It has drawn great attentions in both basic and clinical medicine. Therefore, it is necessary to explore the therapeutic drugs and effective targets for early prediction of SAH. Firstly, we demonstrate that LCN2 can effectively intervene or treat SAH from the perspective of cell signaling pathway. Next, three potential genes that we explored have been validated by manually reviewed experimental evidences. Finally, we turn out that the SAH early ensemble learning predictive model performs better than the classical LR, SVM, and Naïve-Bayes models.

摘要

蛛网膜下腔出血(SAH)是一种具有高死亡率、高致残率和不良临床预后的毁灭性疾病。它在基础医学和临床医学中都引起了极大关注。因此,有必要探索用于SAH早期预测的治疗药物和有效靶点。首先,我们证明了脂质运载蛋白2(LCN2)可以从细胞信号通路的角度有效干预或治疗SAH。接下来,我们探索的三个潜在基因已通过人工审核的实验证据得到验证。最后,我们发现SAH早期集成学习预测模型的表现优于经典的逻辑回归(LR)、支持向量机(SVM)和朴素贝叶斯模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fc6/7186496/dc699132d79a/fgene-11-00391-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验