Suppr超能文献

DRSN4mCPred:在精准医学时代,使用深度残差收缩网络准确预测DNA N4-甲基胞嘧啶位点以用于胃肠道癌的诊断和治疗。

DRSN4mCPred: accurately predicting sites of DNA N4-methylcytosine using deep residual shrinkage network for diagnosis and treatment of gastrointestinal cancer in the precision medicine era.

作者信息

Yu Xia, Ren Jia, Cui Yani, Zeng Rao, Long Haixia, Ma Cuihua

机构信息

School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China.

School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China.

出版信息

Front Med (Lausanne). 2023 May 4;10:1187430. doi: 10.3389/fmed.2023.1187430. eCollection 2023.

Abstract

INTRODUCTION

The DNA N4-methylcytosine (4mC) site levels of those suffering from digestive system cancers were higher, and the pathogenesis of digestive system cancers may also be related to the changes in DNA 4mC levels. Identifying DNA 4mC sites is a very important step in studying the analysis of biological function and cancer prediction. Extracting accurate features from DNA sequences is the key to establishing a prediction model of effective DNA 4mC sites. This study sought to develop a new predictive model, DRSN4mCPred, which aimed to improve the performance of the predicting DNA 4mC sites.

METHODS

The model adopted multi-scale channel attention to extract features and used attention feature fusion (AFF) to fuse features. In order to capture features information more accurately and effectively, this model utilized Deep Residual Shrinkage Network with Channel-Wise thresholds (DRSN-CW) to eliminate noise-related features and achieve a more precise feature representation, thereby, distinguishing the sites in DNA with 4mC and non-4mC. Additionally, the predictive model incorporated an inverted residual block, a Multi-scale Channel Attention Module (MS-CAM), a Bi-directional Long Short Term Memory Network (Bi-LSTM), AFF, and DRSN-CW.

RESULTS AND DISCUSSION

The results indicated the predictive model DRSN4mCPred had extremely good performance in predicting the DNA 4mC sites across different species. This paper will potentially provide support for the diagnosis and treatment of gastrointestinal cancer based on artificial intelligence in the precise medical era.

摘要

引言

消化系统癌症患者的DNA N4-甲基胞嘧啶(4mC)位点水平较高,消化系统癌症的发病机制可能也与DNA 4mC水平的变化有关。识别DNA 4mC位点是研究生物功能分析和癌症预测的非常重要的一步。从DNA序列中提取准确特征是建立有效的DNA 4mC位点预测模型的关键。本研究旨在开发一种新的预测模型DRSN4mCPred,其目的是提高预测DNA 4mC位点的性能。

方法

该模型采用多尺度通道注意力来提取特征,并使用注意力特征融合(AFF)来融合特征。为了更准确有效地捕获特征信息,该模型利用带通道阈值的深度残差收缩网络(DRSN-CW)来消除与噪声相关的特征并实现更精确的特征表示,从而区分DNA中具有4mC和非4mC的位点。此外,预测模型还包含一个倒置残差块、一个多尺度通道注意力模块(MS-CAM)、一个双向长短期记忆网络(Bi-LSTM)、AFF和DRSN-CW。

结果与讨论

结果表明,预测模型DRSN4mCPred在预测不同物种的DNA 4mC位点方面具有非常好的性能。本文可能为精准医疗时代基于人工智能的胃肠道癌症诊断和治疗提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f93/10192687/cda94b3058d2/fmed-10-1187430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验