Wong Eleanor, Anderson Jeffrey S, Zielinski Brandon A, Fletcher P Thomas
University of Utah, Salt Lake City, UT 84112, USA.
Connect Neuroimaging (2018). 2018 Sep;11083:78-87. doi: 10.1007/978-3-030-00755-3_9. Epub 2018 Sep 15.
Functional connectivity from resting-state functional MRI (rsfMRI) is typically represented as a symmetric positive definite (SPD) matrix. Analysis methods that exploit the Riemannian geometry of SPD matrices appropriately adhere to the positive definite constraint, unlike Euclidean methods. Recently proposed approaches for rsfMRI analysis have achieved high accuracy on public datasets, but are computationally intensive and difficult to interpret. In this paper, we show that we can get comparable results using connectivity matrices under the log-Euclidean and affine-invariant Riemannian metrics with relatively simple and interpretable models. On ABIDE Preprocessed dataset, our methods classify autism versus control subjects with 71.1% accuracy. We also show that Riemannian methods beat baseline in regressing connectome features to subject autism severity scores.
静息态功能磁共振成像(rsfMRI)的功能连接通常表示为对称正定(SPD)矩阵。与欧几里得方法不同,适当利用SPD矩阵的黎曼几何的分析方法符合正定约束。最近提出的rsfMRI分析方法在公共数据集上取得了很高的准确率,但计算量大且难以解释。在本文中,我们表明,使用对数欧几里得和仿射不变黎曼度量下的连接矩阵以及相对简单且可解释的模型,我们可以得到可比的结果。在ABIDE预处理数据集上,我们的方法对自闭症患者和对照受试者进行分类的准确率为71.1%。我们还表明,在将脑连接组特征回归到受试者自闭症严重程度评分方面,黎曼方法优于基线。