Suppr超能文献

应用于自闭症的脑网络黎曼回归与分类模型

Riemannian Regression and Classification Models of Brain Networks Applied to Autism.

作者信息

Wong Eleanor, Anderson Jeffrey S, Zielinski Brandon A, Fletcher P Thomas

机构信息

University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Connect Neuroimaging (2018). 2018 Sep;11083:78-87. doi: 10.1007/978-3-030-00755-3_9. Epub 2018 Sep 15.

Abstract

Functional connectivity from resting-state functional MRI (rsfMRI) is typically represented as a symmetric positive definite (SPD) matrix. Analysis methods that exploit the Riemannian geometry of SPD matrices appropriately adhere to the positive definite constraint, unlike Euclidean methods. Recently proposed approaches for rsfMRI analysis have achieved high accuracy on public datasets, but are computationally intensive and difficult to interpret. In this paper, we show that we can get comparable results using connectivity matrices under the log-Euclidean and affine-invariant Riemannian metrics with relatively simple and interpretable models. On ABIDE Preprocessed dataset, our methods classify autism versus control subjects with 71.1% accuracy. We also show that Riemannian methods beat baseline in regressing connectome features to subject autism severity scores.

摘要

静息态功能磁共振成像(rsfMRI)的功能连接通常表示为对称正定(SPD)矩阵。与欧几里得方法不同,适当利用SPD矩阵的黎曼几何的分析方法符合正定约束。最近提出的rsfMRI分析方法在公共数据集上取得了很高的准确率,但计算量大且难以解释。在本文中,我们表明,使用对数欧几里得和仿射不变黎曼度量下的连接矩阵以及相对简单且可解释的模型,我们可以得到可比的结果。在ABIDE预处理数据集上,我们的方法对自闭症患者和对照受试者进行分类的准确率为71.1%。我们还表明,在将脑连接组特征回归到受试者自闭症严重程度评分方面,黎曼方法优于基线。

相似文献

1
Riemannian Regression and Classification Models of Brain Networks Applied to Autism.应用于自闭症的脑网络黎曼回归与分类模型
Connect Neuroimaging (2018). 2018 Sep;11083:78-87. doi: 10.1007/978-3-030-00755-3_9. Epub 2018 Sep 15.
3
Adaptive Log-Euclidean Metrics for SPD Matrix Learning.用于对称正定(SPD)矩阵学习的自适应对数欧几里得度量
IEEE Trans Image Process. 2024;33:5194-5205. doi: 10.1109/TIP.2024.3451930. Epub 2024 Sep 19.
8
Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices.黎曼字典学习和正定矩阵的稀疏编码。
IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):2859-2871. doi: 10.1109/TNNLS.2016.2601307. Epub 2016 Sep 13.
9
Multiclass brain-computer interface classification by Riemannian geometry.基于黎曼几何的多类脑-机接口分类。
IEEE Trans Biomed Eng. 2012 Apr;59(4):920-8. doi: 10.1109/TBME.2011.2172210. Epub 2011 Oct 14.

引用本文的文献

4
Identification of Autism Spectrum Disorder Using Topological Data Analysis.使用拓扑数据分析识别自闭症谱系障碍。
J Imaging Inform Med. 2024 Jun;37(3):1023-1037. doi: 10.1007/s10278-024-01002-3. Epub 2024 Feb 13.
6
Tangent functional connectomes uncover more unique phenotypic traits.切线功能连接组揭示了更多独特的表型特征。
iScience. 2023 Aug 12;26(9):107624. doi: 10.1016/j.isci.2023.107624. eCollection 2023 Sep 15.
7
A Riemannian Revisiting of Structure-Function Mapping Based on Eigenmodes.基于本征模的结构-功能映射的黎曼重探
Front Neuroimaging. 2022 May 25;1:850266. doi: 10.3389/fnimg.2022.850266. eCollection 2022.

本文引用的文献

4
Regression Models on Riemannian Symmetric Spaces.黎曼对称空间上的回归模型
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482. doi: 10.1111/rssb.12169. Epub 2016 Mar 20.
8
Transport on Riemannian manifold for functional connectivity-based classification.基于功能连接性分类的黎曼流形上的传输
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):405-12. doi: 10.1007/978-3-319-10470-6_51.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验