CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal.
Biotechnol Bioeng. 2020 Aug;117(8):2571-2587. doi: 10.1002/bit.27377. Epub 2020 Jun 4.
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
由于丁醇在溶剂、调味剂和其他几种化合物的化学前体方面的应用不断增加,其全球市场正在增长。最近,正丁醇作为生物燃料的优越性能超过了乙醇,这激发了更多的兴趣。(生物)丁醇是由梭菌属通过丙酮丁醇乙醇发酵与乙醇和丙酮一起天然产生的,与石油化工生产相比,其非竞争性、低浓度。与梭菌属相比,大肠杆菌是一种更容易获得的宿主,因此在大肠杆菌中表达了不同的丁醇生产途径,以提高丁醇的产率和速率。本文从历史和理论的角度综述了丁醇的生物生产。综述了在大肠杆菌中提高丁醇产率的所有经过测试的合理代谢工程策略:操纵中心碳代谢、消除竞争途径、辅因子平衡、开发新途径、表达同源酶、消耗不同的底物以及分子生物学策略。本文还总结了代谢建模和途径生成算法领域的进展及其在丁醇生产中的潜在应用。主要目标是收集所有策略,评估各自取得的进展,识别和利用突出的挑战。