Suppr超能文献

利用预测的生物活性谱来改进预测模型。

Using Predicted Bioactivity Profiles to Improve Predictive Modeling.

机构信息

Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden.

Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden.

出版信息

J Chem Inf Model. 2020 Jun 22;60(6):2830-2837. doi: 10.1021/acs.jcim.0c00250. Epub 2020 May 15.

Abstract

Predictive modeling is a cornerstone in early drug development. Using information for multiple domains or across prediction tasks has the potential to improve the performance of predictive modeling. However, aggregating data often leads to incomplete data matrices that might be limiting for modeling. In line with previous studies, we show that by generating predicted bioactivity profiles, and using these as additional features, prediction accuracy of biological endpoints can be improved. Using conformal prediction, a type of confidence predictor, we present a robust framework for the calculation of these profiles and the evaluation of their impact. We report on the outcomes from several approaches to generate the predicted profiles on 16 datasets in cytotoxicity and bioactivity and show that efficiency is improved the most when including the -values from conformal prediction as bioactivity profiles.

摘要

预测建模是药物早期开发的基石。利用来自多个领域或跨预测任务的信息,有可能提高预测建模的性能。然而,聚合数据通常会导致数据矩阵不完整,这可能会限制建模。与之前的研究一致,我们表明,通过生成预测的生物活性谱,并将其用作附加特征,可以提高生物终点预测的准确性。使用一致性预测(一种置信度预测器),我们提出了一种稳健的框架来计算这些谱并评估它们的影响。我们报告了在细胞毒性和生物活性的 16 个数据集上生成预测谱的几种方法的结果,并表明当将一致性预测的 - 值作为生物活性谱包含在内时,效率的提高最为显著。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验