Bolhuis M, Hernandez-Rueda J, van Heijst S E, Tinoco Rivas M, Kuipers L, Conesa-Boj S
Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands.
Nanoscale. 2020 May 21;12(19):10491-10497. doi: 10.1039/d0nr00755b. Epub 2020 May 7.
Transition metal dichalcogenides such as MoS represent promising candidates for building blocks of ultra-thin nanophotonic devices. For such applications, vertically-oriented MoS (v-MoS) nanosheets could be advantageous as compared to conventional horizontal MoS (h-MoS) given that their inherent broken symmetry would favor an enhanced nonlinear response. However, the current lack of a controllable and reproducible fabrication strategy for v-MoS limits the exploration of this potential. Here we present a systematic study of the growth of v-MoS nanosheets based on the sulfurization of a pre-deposited Mo-metal seed layer. We demonstrate that the sulfurization process at high temperatures is driven by the diffusion of sulfur from the vapor-solid interface to the Mo seed layer. Furthermore, we verify an enhanced nonlinear response in the resulting v-MoS nanostructures as compared to their horizontal counterparts. Our results represent a stepping stone towards the fabrication of low-dimensional TMD-based nanostructures for versatile nonlinear nanophotonic devices.
过渡金属二硫属化物,如二硫化钼(MoS),是构建超薄纳米光子器件的理想材料。对于此类应用,垂直取向的二硫化钼(v-MoS)纳米片可能比传统的水平二硫化钼(h-MoS)更具优势,因为其固有的对称性破缺有利于增强非线性响应。然而,目前缺乏一种可控且可重复的v-MoS制备策略,限制了对其潜力的探索。在此,我们基于预沉积的钼金属种子层的硫化过程,对v-MoS纳米片的生长进行了系统研究。我们证明,高温下的硫化过程是由硫从气固界面扩散到钼种子层驱动的。此外,我们验证了与水平结构相比,所得v-MoS纳米结构的非线性响应增强。我们的结果为制造用于多功能非线性纳米光子器件的低维基于过渡金属二硫属化物的纳米结构奠定了基础。