Liu Zhaoyang, Qiu Haixin, Wang Can, Chen Zongping, Zyska Björn, Narita Akimitsu, Ciesielski Artur, Hecht Stefan, Chi Lifeng, Müllen Klaus, Samorì Paolo
University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France.
Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.
Adv Mater. 2020 Jul;32(26):e2001268. doi: 10.1002/adma.202001268. Epub 2020 May 6.
Van der Waals heterostructures (VDWHs), obtained via the controlled assembly of 2D atomically thin crystals, exhibit unique physicochemical properties, rendering them prototypical building blocks to explore new physics and for applications in optoelectronics. As the emerging alternatives to graphene, monolayer transition metal dichalcogenides and bottom-up synthesized graphene nanoribbons (GNRs) are promising candidates for overcoming the shortcomings of graphene, such as the absence of a bandgap in its electronic structure, which is essential in optoelectronics. Herein, VDWHs comprising GNRs onto monolayer MoS are fabricated. Field-effect transistors (FETs) based on such VDWHs show an efficient suppression of the persistent photoconductivity typical of MoS , resulting from the interfacial charge transfer process. The MoS -GNR FETs exhibit drastically reduced hysteresis and more stable behavior in the transfer characteristics, which is a prerequisite for the further photomodulation of charge transport behavior within the MoS -GNR VDWHs. The physisorption of photochromic molecules onto the MoS -GNR VDWHs enables reversible light-driven control over charge transport. In particular, the drain current of the MoS -GNR FET can be photomodulated by 52%, without displaying significant fatigue over at least 10 cycles. Moreover, four distinguishable output current levels can be achieved, demonstrating the great potential of MoS -GNR VDWHs for multilevel memory devices.
通过二维原子级薄晶体的可控组装获得的范德华异质结构(VDWHs)具有独特的物理化学性质,使其成为探索新物理和用于光电子应用的典型构建块。作为石墨烯的新兴替代品,单层过渡金属二硫属化物和自下而上合成的石墨烯纳米带(GNRs)是克服石墨烯缺点的有前途的候选材料,例如其电子结构中没有带隙,而这在光电子学中至关重要。在此,制备了由GNRs与单层MoS₂组成的VDWHs。基于这种VDWHs的场效应晶体管(FETs)显示出对典型的MoS₂持续光电导的有效抑制,这是由界面电荷转移过程导致的。MoS₂-GNR FETs在转移特性中表现出大幅降低的滞后和更稳定的行为,这是进一步光调制MoS₂-GNR VDWHs内电荷传输行为的先决条件。光致变色分子在MoS₂-GNR VDWHs上的物理吸附实现了对电荷传输的可逆光驱动控制。特别是,MoS₂-GNR FET的漏极电流可以被光调制52%,并且在至少10个循环中没有显示出明显的疲劳。此外,可以实现四个可区分的输出电流水平,证明了MoS₂-GNR VDWHs在多级存储器件方面的巨大潜力。