Deng Yunzhou, Lin Xing, Fang Wei, Di Dawei, Wang Linjun, Friend Richard H, Peng Xiaogang, Jin Yizheng
Center for Chemistry of High-Performance & Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.
Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.
Nat Commun. 2020 May 8;11(1):2309. doi: 10.1038/s41467-020-15944-z.
Electroluminescence of colloidal nanocrystals promises a new generation of high-performance and solution-processable light-emitting diodes. The operation of nanocrystal-based light-emitting diodes relies on the radiative recombination of electrically generated excitons. However, a fundamental question-how excitons are electrically generated in individual nanocrystals-remains unanswered. Here, we reveal a nanoscopic mechanism of sequential electron-hole injection for exciton generation in nanocrystal-based electroluminescent devices. To decipher the corresponding elementary processes, we develop electrically-pumped single-nanocrystal spectroscopy. While hole injection into neutral quantum dots is generally considered to be inefficient, we find that the intermediate negatively charged state of quantum dots triggers confinement-enhanced Coulomb interactions, which simultaneously accelerate hole injection and hinder excessive electron injection. In-situ/operando spectroscopy on state-of-the-art quantum-dot light-emitting diodes demonstrates that exciton generation at the ensemble level is consistent with the charge-confinement-enhanced sequential electron-hole injection mechanism probed at the single-nanocrystal level. Our findings provide a universal mechanism for enhancing charge balance in nanocrystal-based electroluminescent devices.
胶体纳米晶体的电致发光有望带来新一代高性能且可溶液加工的发光二极管。基于纳米晶体的发光二极管的运行依赖于电生激子的辐射复合。然而,一个基本问题——激子如何在单个纳米晶体中电生成——仍然没有答案。在这里,我们揭示了基于纳米晶体的电致发光器件中用于激子生成的顺序电子-空穴注入的纳米级机制。为了解释相应的基本过程,我们开发了电泵浦单纳米晶体光谱学。虽然通常认为空穴注入中性量子点效率低下,但我们发现量子点的中间负电荷状态会触发限制增强的库仑相互作用,这同时加速了空穴注入并阻碍了过量电子注入。对先进量子点发光二极管的原位/操作光谱表明,在整体水平上的激子生成与在单纳米晶体水平探测到的电荷限制增强的顺序电子-空穴注入机制一致。我们的发现为增强基于纳米晶体的电致发光器件中的电荷平衡提供了一种通用机制。