Suppr超能文献

电子去往何处?研究半导体纳米材料电化学充电过程中的损失过程。

Where Do the Electrons Go? Studying Loss Processes in the Electrochemical Charging of Semiconductor Nanomaterials.

作者信息

Ubbink Reinout F, Vogel Yan B, Stam Maarten, Chen Hua, Houtepen Arjan J

机构信息

Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

出版信息

Chem Mater. 2025 Jan 13;37(2):736-745. doi: 10.1021/acs.chemmater.4c02998. eCollection 2025 Jan 28.

Abstract

Electrochemical charging of films of semiconductor nanocrystals (NCs) allows precise control over their Fermi level and opens up new possibilities for use of semiconductor NCs in optoelectronic devices. Unfortunately, charges added to the semiconductor NCs are often lost due to electrochemical side reactions. In this work, we examine which loss processes can occur in electrochemically charged semiconductor NC films by comparing numerical drift-diffusion simulations with experimental data. Both reactions with impurities in the electrolyte solution, as well as reactions occurring on the surface of the nanomaterials themselves, are considered. We show that the Gerischer kinetic model can be used to accurately model the one-electron transfer between charges in the semiconductor NC and oxidant or reductant species in solution. Simulations employing the Gerischer model are in agreement with experimental results of charging of semiconductor NC films with ideal one-electron acceptors ferrocene and cobaltocene. We show that reactions of charges in the semiconductor NC film with redox species in solution are reversible when the reduction potential is in the conduction band of the semiconductor NC material but are irreversible when the reduction potential is in the band gap. Experimental charging of semiconductor NC films in the presence of oxygen is always irreversible in our system, even when the reduction potential of oxygen is in the conduction band of the semiconductor NC material. We show that the Gerischer model in combination with a coupled reversible-irreversible reaction mechanism can be used to model oxygen reduction. Finally, we model irreversible reduction reactions with the semiconductor NC material itself, such as reduction of ligands or surface ions. Simulations of semiconductor NC cyclic voltammograms in the presence of material reduction reactions strongly resemble experimental cyclic voltammograms of InP and CdSe NC films. This marks material reduction reactions at the semiconductor NC surface as a likely candidate for the irreversible behavior of these materials in electrochemical experiments. These results show that all reduction reactions with redox potentials in the band gap of semiconductor NCs must be suppressed in order to achieve stable charging of these materials.

摘要

半导体纳米晶体(NCs)薄膜的电化学充电能够精确控制其费米能级,并为半导体NCs在光电器件中的应用开辟了新的可能性。不幸的是,由于电化学副反应,添加到半导体NCs中的电荷常常会损失。在这项工作中,我们通过将数值漂移 - 扩散模拟与实验数据进行比较,研究了在电化学充电的半导体NC薄膜中可能发生哪些损失过程。我们考虑了与电解质溶液中的杂质发生的反应以及在纳米材料自身表面发生的反应。我们表明,格里斯彻动力学模型可用于准确模拟半导体NC中的电荷与溶液中的氧化剂或还原剂物种之间的单电子转移。采用格里斯彻模型的模拟结果与用理想单电子受体二茂铁和二茂钴对半导体NC薄膜进行充电的实验结果一致。我们表明,当还原电位处于半导体NC材料的导带中时,半导体NC薄膜中的电荷与溶液中的氧化还原物种的反应是可逆的,但当还原电位处于带隙中时则是不可逆的。在我们的系统中,即使氧气的还原电位处于半导体NC材料的导带中,在氧气存在下对半导体NC薄膜进行实验充电也总是不可逆的。我们表明,格里斯彻模型与耦合的可逆 - 不可逆反应机制相结合可用于模拟氧还原。最后,我们对与半导体NC材料本身发生的不可逆还原反应进行建模,例如配体或表面离子的还原。在存在材料还原反应的情况下对半导体NC循环伏安图的模拟与InP和CdSe NC薄膜的实验循环伏安图非常相似。这表明半导体NC表面的材料还原反应可能是这些材料在电化学实验中出现不可逆行为的原因。这些结果表明,为了实现这些材料的稳定充电,必须抑制所有还原电位处于半导体NCs带隙中的还原反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d843/11780746/a253da919675/cm4c02998_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验