Chen Hua, Ubbink Reinout F, Olsthoorn Rens A, Stam Maarten, 't Hoen Jesse, Savenije Tom J, Houtepen Arjan J
Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
Chem Mater. 2025 Jun 2;37(12):4435-4444. doi: 10.1021/acs.chemmater.5c00579. eCollection 2025 Jun 24.
The efficiency of quantum dot (QD) light-emitting diodes is limited by inefficient hole injection into the valence levels of the QDs. Electrochemical doping, where mobile ions form electrical double layers (EDLs) at electrodes, offers a route to removing injection barriers. While QD light-emitting electrochemical cells (QLECs) have shown promise, prior studies relied on additional charge injection layers, complicating the study of charge injection into QDs. In this work, devices with a simple ITO/QD active layer/Al structure were fabricated using highly photoluminescent ligand-exchanged CdSe/CdS/ZnS QDs, poly-(ethylene oxide), and lithium trifluoromethanesulfonate as electrolyte. We show that the dense QD films in these QLECs can be electrochemically doped, transport charges, and exhibit electroluminescence. Symmetrical cyclic voltammograms and operando photoluminescence measurements prove that these devices function as electrochemically doped LECs. Spectroelectrochemical experiments on separately n- and p-doped QD films indicate that hole injection remains the primary limitation in QLEC performance. These findings demonstrate that using EDLs to facilitate charge injection in QD light-emitting devices is promising, but significant challenges remain to be solved before electron and hole injections are balanced.
量子点(QD)发光二极管的效率受到空穴注入量子点价带效率低下的限制。电化学掺杂是指移动离子在电极处形成电双层(EDL),为消除注入势垒提供了一条途径。虽然量子点发光电化学电池(QLEC)已展现出前景,但先前的研究依赖于额外的电荷注入层,使对量子点电荷注入的研究变得复杂。在这项工作中,使用高发光的配体交换CdSe/CdS/ZnS量子点、聚环氧乙烷和三氟甲磺酸锂作为电解质,制备了具有简单ITO/量子点活性层/Al结构的器件。我们表明,这些QLEC中的致密量子点薄膜可以进行电化学掺杂、传输电荷并表现出电致发光。对称循环伏安图和原位光致发光测量证明这些器件具有电化学掺杂发光电化学电池的功能。对单独的n型和p型掺杂量子点薄膜进行的光谱电化学实验表明,空穴注入仍然是QLEC性能的主要限制因素。这些发现表明,利用电双层促进量子点发光器件中的电荷注入是有前景的,但在电子和空穴注入达到平衡之前,仍有重大挑战有待解决。