Suppr超能文献

利用动态仿真模型解决精准医学中的经济评估挑战。

Addressing Challenges of Economic Evaluation in Precision Medicine Using Dynamic Simulation Modeling.

机构信息

Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.

Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.

出版信息

Value Health. 2020 May;23(5):566-573. doi: 10.1016/j.jval.2020.01.016. Epub 2020 Mar 26.

Abstract

OBJECTIVES

The objective of this article is to describe the unique challenges and present potential solutions and approaches for economic evaluations of precision medicine (PM) interventions using simulation modeling methods.

METHODS

Given the large and growing number of PM interventions and applications, methods are needed for economic evaluation of PM that can handle the complexity of cascading decisions and patient-specific heterogeneity reflected in the myriad testing and treatment pathways. Traditional approaches (eg, Markov models) have limitations, and other modeling techniques may be required to overcome these challenges. Dynamic simulation models, such as discrete event simulation and agent-based models, are used to design and develop mathematical representations of complex systems and intervention scenarios to evaluate the consequence of interventions over time from a systems perspective.

RESULTS

Some of the methodological challenges of modeling PM can be addressed using dynamic simulation models. For example, issues regarding companion diagnostics, combining and sequencing of tests, and diagnostic performance of tests can be addressed by capturing patient-specific pathways in the context of care delivery. Issues regarding patient heterogeneity can be addressed by using patient-level simulation models.

CONCLUSION

The economic evaluation of PM interventions poses unique methodological challenges that might require new solutions. Simulation models are well suited for economic evaluation in PM because they enable patient-level analyses and can capture the dynamics of interventions in complex systems specific to the context of healthcare service delivery.

摘要

目的

本文旨在描述使用模拟建模方法对精准医学(PM)干预措施进行经济评估所面临的独特挑战,并提出潜在的解决方案和方法。

方法

鉴于 PM 干预措施和应用的数量庞大且不断增加,需要有方法来对 PM 进行经济评估,以应对级联决策的复杂性以及无数测试和治疗途径中反映出的患者特异性异质性。传统方法(例如,马尔可夫模型)存在局限性,可能需要其他建模技术来克服这些挑战。动态仿真模型(如离散事件仿真和基于代理的模型)用于设计和开发复杂系统和干预方案的数学表示,以从系统角度评估干预措施随时间推移的后果。

结果

使用动态仿真模型可以解决 PM 建模的一些方法学挑战。例如,通过在护理提供的背景下捕获患者特定的途径,可以解决伴随诊断、测试的组合和排序以及测试的诊断性能等问题。通过使用患者水平的仿真模型,可以解决患者异质性问题。

结论

PM 干预措施的经济评估提出了独特的方法学挑战,可能需要新的解决方案。仿真模型非常适合 PM 的经济评估,因为它们可以进行患者水平的分析,并能够捕获特定于医疗保健服务提供背景的复杂系统中干预措施的动态。

相似文献

10
Cost-effectiveness of precision medicine: a scoping review.精准医学的成本效益:范围综述。
Int J Public Health. 2019 Dec;64(9):1261-1271. doi: 10.1007/s00038-019-01298-x. Epub 2019 Nov 15.

引用本文的文献

2
Patient-level simulation models in cancer care: a systematic review.癌症护理中患者层面的模拟模型:一项系统综述。
Front Public Health. 2025 May 9;13:1335300. doi: 10.3389/fpubh.2025.1335300. eCollection 2025.
7
How is Value Defined in Molecular Testing in Cancer? A Scoping Review.癌症分子检测中的价值如何定义?一项范围综述。
Appl Health Econ Health Policy. 2025 May;23(3):409-424. doi: 10.1007/s40258-024-00901-4. Epub 2024 Jul 9.

本文引用的文献

3
Optimizing Precision Medicine for Public Health.优化公共卫生领域的精准医学
Front Public Health. 2019 Mar 7;7:42. doi: 10.3389/fpubh.2019.00042. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验