Suppr超能文献

一种用于移动健康研究中密集纵向数据的连续时间动态因子模型。

A Continuous-Time Dynamic Factor Model for Intensive Longitudinal Data Arising from Mobile Health Studies.

作者信息

Abbott Madeline R, Dempsey Walter H, Nahum-Shani Inbal, Lam Cho Y, Wetter David W, Taylor Jeremy M G

机构信息

Department of Biostatistics, https://ror.org/00jmfr291University of Michigan, Ann Arbor, MI, USA.

Institute for Social Research, https://ror.org/00jmfr291University of Michigan, Ann Arbor, MI, USA.

出版信息

Psychometrika. 2025 Jun 16:1-22. doi: 10.1017/psy.2025.10023.

Abstract

Intensive longitudinal data (ILD) collected in mobile health (mHealth) studies contain rich information on the dynamics of multiple outcomes measured frequently over time. Motivated by an mHealth study in which participants self-report the intensity of many emotions multiple times per day, we describe a dynamic factor model that summarizes ILD as a low-dimensional, interpretable latent process. This model consists of (i) a measurement submodel-a factor model-that summarizes the multivariate longitudinal outcome as lower-dimensional latent variables and (ii) a structural submodel-an Ornstein-Uhlenbeck (OU) stochastic process-that captures the dynamics of the multivariate latent process in continuous time. We derive a closed-form likelihood for the marginal distribution of the outcome and the computationally-simpler sparse precision matrix for the OU process. We propose a block coordinate descent algorithm for estimation and use simulation studies to show that it has good statistical properties with ILD. Then, we use our method to analyze data from the mHealth study. We summarize the dynamics of 18 emotions using models with one, two, and three time-varying latent factors, which correspond to different behavioral science theories of emotions. We demonstrate how results can be interpreted to help improve behavioral science theories of momentary emotions, latent psychological states, and their dynamics.

摘要

移动健康(mHealth)研究中收集的密集纵向数据(ILD)包含了关于多个随时间频繁测量的结果动态变化的丰富信息。受一项mHealth研究的启发,在该研究中参与者每天多次自我报告多种情绪的强度,我们描述了一种动态因子模型,该模型将ILD总结为一个低维的、可解释的潜在过程。该模型由(i)一个测量子模型——一个因子模型——将多变量纵向结果总结为低维潜在变量,以及(ii)一个结构子模型——一个奥恩斯坦 - 乌伦贝克(OU)随机过程——在连续时间内捕捉多变量潜在过程的动态变化。我们推导了结果边际分布的闭式似然以及OU过程计算更简单的稀疏精度矩阵。我们提出了一种用于估计的块坐标下降算法,并通过模拟研究表明它对ILD具有良好的统计特性。然后,我们使用我们的方法分析来自mHealth研究的数据。我们使用具有一、二和三个随时间变化的潜在因子的模型总结了18种情绪的动态变化,这些模型对应于不同的情绪行为科学理论。我们展示了如何解释结果以帮助改进关于瞬间情绪、潜在心理状态及其动态变化的行为科学理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f16c/12485570/6107492e9726/S0033312325100239_fig1.jpg

相似文献

4
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.
Cochrane Database Syst Rev. 2015 Jul 27;2015(7):MR000042. doi: 10.1002/14651858.MR000042.pub2.
5
A latent variable approach to jointly modeling longitudinal and cumulative event data using a weighted two-stage method.
Stat Med. 2024 Sep 20;43(21):4163-4177. doi: 10.1002/sim.10171. Epub 2024 Jul 18.
6
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.
9
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.
10

本文引用的文献

2
Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension.
Stat Biosci. 2019 Dec;11(3):614-629. doi: 10.1007/s12561-019-09256-0. Epub 2019 Sep 23.
4
Latent Ornstein-Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses.
Biometrics. 2021 Jun;77(2):689-701. doi: 10.1111/biom.13292. Epub 2020 Jun 4.
5
Modeling local dependence in latent vector autoregressive models.
Biostatistics. 2021 Jan 28;22(1):148-163. doi: 10.1093/biostatistics/kxz021.
6
Bayesian Data Analysis with the Bivariate Hierarchical Ornstein-Uhlenbeck Process Model.
Multivariate Behav Res. 2016;51(1):106-19. doi: 10.1080/00273171.2015.1110512.
7
Associations Between Anxiety Sensitivity, Negative Affect, and Smoking During a Self-Guided Smoking Cessation Attempt.
Nicotine Tob Res. 2016 May;18(5):1188-95. doi: 10.1093/ntr/ntv253. Epub 2015 Nov 9.
8
Relations among affect, abstinence motivation and confidence, and daily smoking lapse risk.
Psychol Addict Behav. 2014 Jun;28(2):376-88. doi: 10.1037/a0034445.
9
Generalized Dynamic Factor Models for Mixed-Measurement Time Series.
J Comput Graph Stat. 2014 Feb 12;23(1):169-191. doi: 10.1080/10618600.2012.729986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验