Center for International Forestry Research (CIFOR), Lima, Peru.
Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
Glob Chang Biol. 2020 Dec;26(12):7198-7216. doi: 10.1111/gcb.15354. Epub 2020 Oct 9.
Mauritia flexuosa palm swamp, the prevailing Peruvian Amazon peatland ecosystem, is extensively threatened by degradation. The unsustainable practice of cutting whole palms for fruit extraction modifies forest's structure and composition and eventually alters peat-derived greenhouse gas (GHG) emissions. We evaluated the spatiotemporal variability of soil N O and CH fluxes and environmental controls along a palm swamp degradation gradient formed by one undegraded site (Intact), one moderately degraded site (mDeg) and one heavily degraded site (hDeg). Microscale variability differentiated hummocks supporting live or cut palms from surrounding hollows. Macroscale analysis considered structural changes in vegetation and soil microtopography as impacted by degradation. Variables were monitored monthly over 3 years to evaluate intra- and inter-annual variability. Degradation induced microscale changes in N O and CH emission trends and controls. Site-scale average annual CH emissions were similar along the degradation gradient (225.6 ± 50.7, 160.5 ± 65.9 and 169.4 ± 20.7 kg C ha year at the Intact, mDeg and hDeg sites, respectively). Site-scale average annual N O emissions (kg N ha year ) were lower at the mDeg site (0.5 ± 0.1) than at the Intact (1.3 ± 0.6) and hDeg sites (1.1 ± 0.4), but the difference seemed linked to heterogeneous fluctuations in soil water-filled pore space (WFPS) along the forest complex rather than to degradation. Monthly and annual emissions were mainly controlled by variations in WFPS, water table level (WT) and net nitrification for N O; WT, air temperature and net nitrification for CH . Site-scale N O emissions remained steady over years, whereas CH emissions rose exponentially with increased precipitation. While the minor impact of degradation on palm swamp peatland N O and CH fluxes should be tested elsewhere, the evidenced large and variable CH emissions and significant N O emissions call for improved modeling of GHG dynamics in tropical peatlands to test their response to climate changes.
软叶藤本棕榈沼泽是秘鲁亚马逊地区主要的泥炭地生态系统,但它正受到广泛的退化威胁。为了提取果实而整株砍伐棕榈树的不可持续做法改变了森林的结构和组成,最终改变了由泥炭衍生的温室气体(GHG)排放。我们评估了在一个由一个未退化的地点(完整)、一个中度退化的地点(mDeg)和一个严重退化的地点(hDeg)组成的棕榈沼泽退化梯度上,土壤 N O 和 CH 通量的时空变异性和环境控制。微尺度变异性将支撑活棕榈树或砍伐棕榈树的丘和周围的洼地区分开来。宏观尺度分析考虑了退化对植被和土壤微地形的结构变化。在三年内,每月监测一次这些变量,以评估年内和年际的可变性。退化导致了 N O 和 CH 排放趋势和控制因素的微尺度变化。在退化梯度上,各站点的年平均 CH 排放量相似(完整、mDeg 和 hDeg 站点的年平均 CH 排放量分别为 225.6±50.7、160.5±65.9 和 169.4±20.7 kg C ha year )。mDeg 站点的年平均 N O 排放量(kg N ha year )(0.5±0.1)低于完整站点(1.3±0.6)和 hDeg 站点(1.1±0.4),但这种差异似乎与森林复合体中土壤水填充孔隙空间(WFPS)的不均匀波动有关,而不是与退化有关。每月和每年的排放量主要受 WFPS、地下水位(WT)和净硝化作用对 N O 的控制;WT、空气温度和净硝化作用对 CH 的控制。在几年内,站点尺度的 N O 排放量保持稳定,而 CH 排放量随着降水量的增加呈指数增长。虽然退化对棕榈沼泽泥炭地 N O 和 CH 通量的影响较小,但有证据表明,大量和可变的 CH 排放以及显著的 N O 排放需要改进对热带泥炭地 GHG 动态的建模,以检验它们对气候变化的反应。