Grassein Paul, Delarue Patrice, Nicolaï Adrien, Neiers Fabrice, Scheraga Harold A, Maisuradze Gia G, Senet Patrick
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Cedex Dijon, France.
Centre des Sciences du Goût et de l'Alimentation (CSGA), INRA, CNRS, Université de Bourgogne Franche-Comté, Dijon, France.
J Phys Chem B. 2020 Jun 4;124(22):4391-4398. doi: 10.1021/acs.jpcb.0c01230. Epub 2020 May 24.
Thermal protein unfolding resembles a global (two-state) phase transition. At the local scale, protein unfolding is, however, heterogeneous and probe dependent. Here, we consider local order parameters defined by the local curvature and torsion of the protein main chain. Because chemical shifts (CS's) measured by NMR spectroscopy are extremely sensitive to the local atomic environment, CS has served as a local probe of thermal unfolding of proteins by varying the position of the atomic isotope along the amino acid sequence. The variation of the CS of each C atom along the sequence as a function of the temperature defines a local heat-induced denaturation curve. We demonstrate that these local heat-induced denaturation curves mirror the local protein nativeness defined by the free energy landscape of the local curvature and torsion of the protein main chain described by the CC virtual bonds. Comparison between molecular dynamics simulations and CS data of the gpW protein demonstrates that some local native states defined by the local curvature and torsion of the main chain, mainly located in secondary structures, are coupled to each other whereas others, mainly located in flexible protein segments, are not. Consequently, CS's of some residues are faithful reporters of global protein unfolding, with heat-induced denaturation curves similar to the average global one, whereas other residues remain silent about the protein unfolded state. For the latter, the local deformation of the protein main chain, characterized by its local curvature and torsion, is not cooperatively coupled to global unfolding.
热蛋白解折叠类似于一种全局(两态)相变。然而,在局部尺度上,蛋白解折叠是异质的且依赖于探针。在此,我们考虑由蛋白质主链的局部曲率和扭转定义的局部序参量。由于通过核磁共振光谱测量的化学位移(CS)对局部原子环境极其敏感,通过沿氨基酸序列改变原子同位素的位置,CS已成为蛋白质热解折叠的局部探针。每个C原子的CS沿序列随温度的变化定义了一条局部热诱导变性曲线。我们证明,这些局部热诱导变性曲线反映了由CC虚拟键描述的蛋白质主链局部曲率和扭转的自由能景观所定义的局部蛋白质天然状态。gpW蛋白的分子动力学模拟与CS数据之间的比较表明,一些由主链局部曲率和扭转定义的局部天然状态(主要位于二级结构中)相互耦合,而其他状态(主要位于蛋白质的柔性片段中)则不然。因此,一些残基的CS是全局蛋白解折叠的可靠报告者,其热诱导变性曲线类似于平均全局曲线,而其他残基对蛋白的未折叠状态保持沉默。对于后者,以其局部曲率和扭转为特征的蛋白质主链局部变形与全局解折叠没有协同耦合。