Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 21078 Dijon, France.
Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS-Université de Bourgogne, 21000 Dijon, France.
Biomolecules. 2024 Jun 26;14(7):759. doi: 10.3390/biom14070759.
Glutathione transferase (GST) is a superfamily of ubiquitous enzymes, multigenic in numerous organisms and which generally present homodimeric structures. GSTs are involved in numerous biological functions such as chemical detoxification as well as chemoperception in mammals and insects. GSTs catalyze the conjugation of their cofactor, reduced glutathione (GSH), to xenobiotic electrophilic centers. To achieve this catalytic function, GSTs are comprised of a ligand binding site and a GSH binding site per subunit, which is very specific and highly conserved; the hydrophobic substrate binding site enables the binding of diverse substrates. In this work, we focus our interest in a model organism, the fruit fly (), which comprises 42 GST sequences distributed in six classes and composing its GSTome. The goal of this study is to describe the complete structural GSTome of to determine how changes in the amino acid sequence modify the structural characteristics of GST, particularly in the GSH binding sites and in the dimerization interface. First, we predicted the 3D atomic structures of each GST using the AlphaFold (AF) program and compared them with X-ray crystallography structures, when they exist. We also characterized and compared their global and local folds. Second, we used multiple sequence alignment coupled with AF-predicted structures to characterize the relationship between the conservation of amino acids in the sequence and their structural features. Finally, we applied normal mode analysis to estimate thermal B-factors of all GST structures of . Particularly, we extracted flexibility profiles of GST and identify key residues and motifs that are systematically involved in the ligand binding/dimerization processes and thus playing a crucial role in the catalytic function. This methodology will be extended to guide the in silico design of synthetic GST with new/optimal catalytic properties for detoxification applications.
谷胱甘肽转移酶(GST)是一个广泛存在的酶的超家族,在许多生物体中是多基因的,通常呈现同源二聚体结构。GST 参与许多生物学功能,如哺乳动物和昆虫的化学解毒和化学感受。GST 催化其辅因子还原型谷胱甘肽(GSH)与外源亲电中心的缀合。为了实现这种催化功能,GST 由每个亚基的配体结合位点和 GSH 结合位点组成,这些位点非常特异且高度保守;疏水性底物结合位点使不同的底物能够结合。在这项工作中,我们关注一个模式生物,果蝇(),它包含 42 个 GST 序列,分布在六个类别中,构成了其 GSTome。本研究的目的是描述的完整结构 GSTome,以确定氨基酸序列的变化如何修饰 GST 的结构特征,特别是在 GSH 结合位点和二聚化界面。首先,我们使用 AlphaFold(AF)程序预测了每个 GST 的 3D 原子结构,并将其与 X 射线晶体结构进行了比较,如果存在的话。我们还对其全局和局部折叠进行了特征描述和比较。其次,我们使用多重序列比对结合 AF 预测的结构来描述氨基酸序列的保守性与结构特征之间的关系。最后,我们应用正常模式分析来估计所有 GST 结构的热 B 因子。特别地,我们提取了 GST 的灵活性分布,并确定了系统参与配体结合/二聚化过程的关键残基和基序,从而在催化功能中发挥关键作用。这种方法将扩展到指导具有新的/最佳催化特性的合成 GST 的计算机设计,用于解毒应用。