Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany.
Plant Physiol. 2020 Jul;183(3):998-1010. doi: 10.1104/pp.20.00440. Epub 2020 May 12.
Root developmental plasticity enables plants to adapt to limiting or fluctuating nutrient conditions in the soil. When grown under nitrogen (N) deficiency, plants develop a more exploratory root system by increasing primary and lateral root length. However, mechanisms underlying this so-called foraging response remain poorly understood. We performed a genome-wide association study in Arabidopsis () and we show here that noncoding variations of the brassinosteroid (BR) biosynthesis gene () lead to variation of the transcript level that contributes to natural variation of root elongation under low N. In addition to , other central BR biosynthesis genes upregulated under low N include , , and Phenotypic characterization of knockout and knockdown mutants of these genes showed significant reduction of their root elongation response to low N, suggesting a systemic stimulation of BR biosynthesis to promote root elongation. Moreover, we show that low N-induced root elongation is associated with aboveground N content and that overexpression of significantly improves plant growth and overall N accumulation. Our study reveals that mild N deficiency induces key genes in BR biosynthesis and that natural variation in BR synthesis contributes to the root foraging response, complementing the impact of enhanced BR signaling observed recently. Furthermore, these results suggest a considerable potential of BR biosynthesis to genetically engineer plants with improved N uptake.
根系发育可塑性使植物能够适应土壤中有限或波动的养分条件。当在氮(N)缺乏的条件下生长时,植物通过增加主根和侧根的长度来发展出更具探索性的根系。然而,这种所谓的觅食反应的机制仍知之甚少。我们在拟南芥中进行了全基因组关联研究,结果表明,油菜素内酯(BR)生物合成基因的非编码变异导致了转录水平的变化,这有助于低氮条件下根伸长的自然变异。除了 外,其他在低氮条件下上调的BR 生物合成基因包括 、 和 。这些基因的敲除和敲低突变体的表型特征表明,它们对低氮的根伸长反应显著降低,这表明 BR 生物合成的系统刺激促进了根伸长。此外,我们表明,低氮诱导的根伸长与地上部 N 含量有关,过表达 显著提高了植物的生长和整体 N 积累。我们的研究揭示了轻度氮缺乏诱导 BR 生物合成的关键基因,并且 BR 合成的自然变异有助于根觅食反应,补充了最近观察到的增强 BR 信号的影响。此外,这些结果表明 BR 生物合成具有相当大的潜力,可以通过遗传工程设计具有改善的氮吸收能力的植物。