Suppr超能文献

扭曲双层二硫化钼中高频拉曼模式的演变及其掺杂依赖性

Evolution of high-frequency Raman modes and their doping dependence in twisted bilayer MoS.

作者信息

Debnath Rahul, Maity Indrajit, Biswas Rabindra, Raghunathan Varun, Jain Manish, Ghosh Arindam

机构信息

Department of Physics, Indian Institute of Science, Bangalore 560012, India.

出版信息

Nanoscale. 2020 Sep 7;12(33):17272-17280. doi: 10.1039/c9nr09897f. Epub 2020 May 13.

Abstract

Twisted van der Waals heterostructures provide a new platform for studying strongly correlated quantum phases. The interlayer coupling in these heterostructures is sensitive to the twist angle (θ) and key to controllably tuning several interesting properties. Here, we demonstrate the systematic evolution of the interlayer coupling strength with twist angle in bilayer MoS using a combination of Raman spectroscopy and classical simulations. At zero doping, we observe a monotonic increase in the separation between the A and E mode frequencies as θ decreases from 10°→ 1°, and the separation approaches that of a bilayer at small twist angles. Furthermore, using doping dependent Raman spectroscopy, we reveal the θ dependent softening and broadening of the A mode, whereas the E mode remains unaffected. Using first principles based simulations, we demonstrate large (weak) electron-phonon coupling for the A (E) mode, which explains the experimentally observed trends. Our study provides a non-destructive way to characterize the twist angle and the interlayer coupling and establishes the manipulation of phonons in twisted bilayer MoS (twistnonics).

摘要

扭曲的范德华异质结构为研究强关联量子相提供了一个新平台。这些异质结构中的层间耦合对扭曲角(θ)敏感,是可控调节几个有趣特性的关键。在此,我们结合拉曼光谱和经典模拟,展示了双层MoS₂中层间耦合强度随扭曲角的系统演变。在零掺杂时,我们观察到随着θ从10°减小到1°,A和E模式频率之间的间距单调增加,并且在小扭曲角时该间距接近双层的间距。此外,利用依赖于掺杂的拉曼光谱,我们揭示了A模式随θ的软化和展宽,而E模式不受影响。使用基于第一性原理的模拟,我们证明了A(E)模式具有大(弱)的电子 - 声子耦合,这解释了实验观察到的趋势。我们的研究提供了一种无损表征扭曲角和层间耦合的方法,并确立了对扭曲双层MoS₂(扭曲声子学)中声子的操控。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验