School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. Present address: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China and State Key Laboratory of Applied Microbiology Southern China, Guangzhou, People's Republic of China.
Nanotechnology. 2020 Aug 28;31(35):354002. doi: 10.1088/1361-6528/ab92c7. Epub 2020 May 13.
A growing number of bacterial species are known to move electrons across their cell envelopes. Naturally this occurs in support of energy conservation and carbon-fixation. For biotechnology it allows electron exchange between bacteria and electrodes in microbial fuel cells and during microbial electrosynthesis. In this context Rhodopseudomonas palustris TIE-1 is of much interest. These bacteria respond to light by taking electrons from their external environment, including electrodes, to drive CO-fixation. The PioA cytochrome, that spans the bacterial outer membrane, is essential for this electron transfer and yet little is known about its structure and electron transfer properties. Here we reveal the ten c-type hemes of PioA are redox active across the window +250 to -400 mV versus Standard Hydrogen Electrode and that the hemes with most positive reduction potentials have His/Met and His/HO ligation. These chemical and redox properties distinguish PioA from the more widely studied family of MtrA outer membrane decaheme cytochromes with ten His/His ligated hemes. We predict a structure for PioA in which the hemes form a chain spanning the longest dimension of the protein, from Heme 1 to Heme 10. Hemes 2, 3 and 7 are identified as those most likely to have His/Met and/or His/HO ligation. Sequence analysis suggests His/Met ligation of Heme 2 and/or 7 is a defining feature of decaheme PioA homologs from over 30 different bacterial genera. His/Met ligation of Heme 3 appears to be less common and primarily associated with PioA homologs from purple non-sulphur bacteria belonging to the alphaproteobacteria class.
越来越多的细菌物种被发现能够在其细胞包膜上传递电子。这自然是为了支持能量守恒和碳固定。对于生物技术来说,这允许在微生物燃料电池和微生物电合成过程中,细菌和电极之间进行电子交换。在这种情况下,沼泽红假单胞菌 TIE-1 非常有趣。这些细菌通过从外部环境(包括电极)获取电子来响应光线,从而驱动 CO 固定。横跨细菌外膜的 PioA 细胞色素对于这种电子转移至关重要,但对其结构和电子转移特性知之甚少。在这里,我们揭示了 PioA 的十个 c 型血红素在+250 至-400 mV 标准氢电极相对于标准氢电极的窗口内是氧化还原活性的,并且具有最正还原电位的血红素具有 His/Met 和 His/HO 配位。这些化学和氧化还原特性将 PioA 与更广泛研究的 MtrA 外膜 decaheme 细胞色素家族区分开来,后者具有十个 His/His 配位的血红素。我们预测了 PioA 的结构,其中血红素形成一个横跨蛋白质最长维度的链,从血红素 1 到血红素 10。血红素 2、3 和 7 被确定为最有可能具有 His/Met 和/或 His/HO 配位的血红素。序列分析表明,血红素 2 和/或 7 的 His/Met 配位是来自 30 多个不同细菌属的 decaheme PioA 同源物的定义特征。血红素 3 的 His/Met 配位似乎不太常见,主要与属于α变形菌纲的紫色非硫细菌的 PioA 同源物相关。