Suppr超能文献

TIE-1 中的蛋白相互作用揭示了耐光亚铁氧化的分子基础。

Protein Interactions in TIE-1 Reveal the Molecular Basis for Resilient Photoferrotrophic Iron Oxidation.

机构信息

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.

Magnetic Resonance Center, Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.

出版信息

Molecules. 2023 Jun 13;28(12):4733. doi: 10.3390/molecules28124733.

Abstract

is an alphaproteobacterium with impressive metabolic versatility, capable of oxidizing ferrous iron to fix carbon dioxide using light energy. Photoferrotrophic iron oxidation is one of the most ancient metabolisms, sustained by the operon coding for three proteins: PioB and PioA, which form an outer-membrane porin-cytochrome complex that oxidizes iron outside of the cell and transfers the electrons to the periplasmic high potential iron-sulfur protein (HIPIP) PioC, which delivers them to the light-harvesting reaction center (LH-RC). Previous studies have shown that PioA deletion is the most detrimental for iron oxidation, while, the deletion of PioC resulted in only a partial loss. The expression of another periplasmic HiPIP, designated Rpal_4085, is strongly upregulated in photoferrotrophic conditions, making it a strong candidate for a PioC substitute. However, it is unable to reduce the LH-RC. In this work we used NMR spectroscopy to map the interactions between PioC, PioA, and the LH-RC, identifying the key amino acid residues involved. We also observed that PioA directly reduces the LH-RC, and this is the most likely substitute upon PioC deletion. By contrast, Rpal_4085 demontrated significant electronic and structural differences from PioC. These differences likely explain its inability to reduce the LH-RC and highlight its distinct functional role. Overall, this work reveals the functional resilience of the operon pathway and further highlights the use of paramagnetic NMR for understanding key biological processes.

摘要

是一种具有令人印象深刻的代谢多样性的α变形菌,能够利用光能氧化亚铁固定二氧化碳。光亚铁氧化作用是最古老的代谢之一,由编码三种蛋白质的 操纵子维持:PioB 和 PioA,它们形成一个外膜孔-细胞色素复合物,在细胞外氧化铁,并将电子转移到周质高电势铁-硫蛋白(HIPIP)PioC,将其传递到光收集反应中心(LH-RC)。先前的研究表明,PioA 的缺失对铁氧化的影响最大,而 PioC 的缺失仅导致部分损失。另一种周质 HiPIP,命名为 Rpal_4085,在光亚铁氧化条件下强烈上调表达,使其成为 PioC 替代物的有力候选者。然而,它不能还原 LH-RC。在这项工作中,我们使用 NMR 光谱来绘制 PioC、PioA 和 LH-RC 之间的相互作用,确定涉及的关键氨基酸残基。我们还观察到 PioA 直接还原 LH-RC,这是 PioC 缺失时最有可能的替代物。相比之下,Rpal_4085 与 PioC 表现出显著的电子和结构差异。这些差异可能解释了它不能还原 LH-RC 的原因,并突出了其独特的功能作用。总的来说,这项工作揭示了 操纵子途径的功能弹性,并进一步强调了顺磁 NMR 在理解关键生物过程中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d7d/10304953/4b29b94ea40c/molecules-28-04733-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验