Suppr超能文献

基于遥感和移动大数据的人群光污染暴露的街道尺度分析——以深圳市为例。

Street-Scale Analysis of Population Exposure to Light Pollution Based on Remote Sensing and Mobile Big Data-Shenzhen City as a Case.

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Department of Geography, Hong Kong Baptist University, KLN, Hong Kong, China.

出版信息

Sensors (Basel). 2020 May 11;20(9):2728. doi: 10.3390/s20092728.

Abstract

Most studies on light pollution are based on light intensity retrieved from nighttime light (NTL) remote sensing with less consideration of the population factors. Furthermore, the coarse spatial resolution of traditional NTL remote sensing data limits the refined applications in current smart city studies. In order to analyze the influence of light pollution on populated areas, this study proposes an index named population exposure to light pollution (PELP) and conducts a street-scale analysis to illustrate spatial variation of PELP among residential areas in cites. By taking Shenzhen city as a case, multi-source data were combined including high resolution NTL remote sensing data from the Luojia 1-01 satellite sensor, high-precision mobile big data for visualizing human activities and population distribution as well as point of interest (POI) data. Results show that the main influenced areas of light pollution are concentrated in the downtown and core areas of newly expanded areas with obvious deviation corrected like traditional serious light polluted regions (e.g., ports). In comparison, commercial-residential mixed areas and village-in-city show a high level of PELP. The proposed method better presents the extent of population exposure to light pollution at a fine-grid scale and the regional difference between different types of residential areas in a city.

摘要

大多数光污染研究都是基于夜间灯光(NTL)遥感获取的光强度,较少考虑人口因素。此外,传统 NTL 遥感数据的粗糙空间分辨率限制了其在当前智慧城市研究中的精细化应用。为了分析光污染对人口密集区的影响,本研究提出了一个名为人口光污染暴露(PELP)的指标,并进行了街道尺度的分析,以说明城市居民区 PELP 的空间变化。以深圳市为例,综合利用了多源数据,包括来自珞珈一号 01 星传感器的高分辨率 NTL 遥感数据、可视化人类活动和人口分布的高精度移动大数据以及兴趣点(POI)数据。结果表明,光污染的主要影响区域集中在市区和新拓展区的核心区域,与传统的严重光污染区域(如港口)相比,存在明显的校正偏差。相比之下,商住混合区和城中村表现出较高的 PELP 水平。该方法更好地呈现了人口在细网格尺度上暴露于光污染的程度以及城市不同类型居民区之间的区域差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6e8/7248970/ee46b0ef15a0/sensors-20-02728-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验