Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
Nat Commun. 2020 May 13;11(1):2399. doi: 10.1038/s41467-020-16118-7.
The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.
能够在整个身体中对分子进行容积监测,可为健康功能和疾病研究提供有价值的生物标志物,但活体分子靶标非侵入性检测通常灵敏度或选择性较差。在这里,我们描述了一系列有效的成像探针,这些探针可以被深层组织中的感兴趣分子激活,为在没有与传统分子成像剂相关的辐射或重金属含量的情况下对纳摩尔级分析物进行作图提供了基础。这些探针是可还原的血管扩张剂,可诱导通过血液动力学成像检测到的反应;它们是通过将血管活性肽与合成化学附属物和蛋白质阻断结构域组合而构建的。我们使用此结构创建超灵敏的生物素响应成像剂,并将其应用于使用功能磁共振成像对大鼠大脑中的靶标进行宽场映射。我们还调整了传感器设计以检测神经递质多巴胺,这说明了该方法在解决生物学上重要的分子方面的多功能性。