Department of Biological Engineering, Brain and Cognitive Sciences, and Nuclear Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
Health Research Institute , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan.
J Am Chem Soc. 2019 Oct 9;141(40):15751-15754. doi: 10.1021/jacs.9b08744. Epub 2019 Sep 30.
Neurotransmitter-sensitive contrast agents for magnetic resonance imaging (MRI) have recently been used for mapping signaling dynamics in live animal brains, but paramagnetic sensors for -weighted MRI are usually effective only at micromolar concentrations that themselves perturb neurochemistry. Here we present an alternative molecular architecture for detecting neurotransmitters, using superparamagnetic iron oxide nanoparticles conjugated to tethered neurotransmitter analogs and engineered neurotransmitter binding proteins. Interactions between the nanoparticle conjugates result in clustering that is reversibly disrupted in the presence of neurotransmitter analytes, thus altering -weighted MRI signals. We demonstrate this principle using tethered dopamine and serotonin analogs, together with proteins selected for their ability to competitively bind either the analogs or the neurotransmitters themselves. Corresponding sensors for dopamine and serotonin exhibit target-selective relaxivity changes of up to 20%, while also operating below endogenous neurotransmitter concentrations. Semisynthetic magnetic particle sensors thus represent a promising path for minimally perturbative studies of neurochemical analytes.
用于磁共振成像 (MRI) 的神经递质敏感对比剂最近已被用于对活体动物大脑中的信号转导进行成像,但用于 -加权 MRI 的顺磁传感器通常仅在自身会干扰神经化学的微摩尔浓度下有效。在这里,我们提出了一种用于检测神经递质的替代分子结构,使用与连接的神经递质类似物和工程化的神经递质结合蛋白偶联的超顺磁氧化铁纳米颗粒。纳米颗粒缀合物之间的相互作用导致聚集,在存在神经递质分析物时可被可逆地破坏,从而改变 -加权 MRI 信号。我们使用连接的多巴胺和血清素类似物以及针对其与类似物或神经递质本身的竞争结合能力进行选择的蛋白质来证明这一原理。多巴胺和血清素的对应传感器表现出高达 20%的靶标选择性弛豫率变化,同时也在内源性神经递质浓度以下运行。半合成磁性粒子传感器因此代表了一种用于对神经化学分析物进行最小干扰研究的很有前途的途径。