Freie Universität Berlin, Berlin, Germany.
Universidade Federal de São Paulo, São Paulo, Brazil.
Assessment. 2021 Sep;28(6):1708-1722. doi: 10.1177/1073191120915273. Epub 2020 May 14.
Longitudinal invariance indicates that a construct is measured over time in the same way, and this fundamental scale property is a to track change over time using ordinary mean comparisons. The Alzheimer's Disease Assessment Scale-cognitive (ADAS-Cog) and its subscale scores are often used to monitor the progression of Alzheimer's disease, but longitudinal invariance has not been formally evaluated. A configural invariance model was used to evaluate ADAS-Cog data as a three correlated factors structure for two visits over 6 months, and four visits over 2 years (baseline, 6, 12, and 24 months) among 341 participants with Alzheimer's disease. We also attempted to model ADAS-Cog subscales individually, and furthermore added item-specific latent variables. Neither the three-correlated factors ADAS-Cog model, nor its subscales viewed unidimensionally, achieved longitudinal configural invariance under a traditional modeling approach. No subscale achieved scalar invariance when considered unidimensional across 6 months or 2 years of assessment. In models accounting for item-specific effects, configural and metric invariance were achieved for language and memory subscales. Although some of the ADAS-Cog individual items were reliable, comparisons of summed ADAS-Cog scores and subscale scores over time may not be meaningful due to a lack of longitudinal invariance.
纵向不变性表明,一个结构在不同时间以相同的方式进行测量,而这种基本的尺度属性是跟踪随时间变化的关键,以便使用普通的均值比较进行跟踪。阿尔茨海默病评估量表认知(ADAS-Cog)及其子量表评分通常用于监测阿尔茨海默病的进展,但纵向不变性尚未得到正式评估。采用配置不变性模型,对 341 名阿尔茨海默病患者在 6 个月内两次就诊、2 年内(基线、6 个月、12 个月和 24 个月)的 ADAS-Cog 数据进行了评估,将其作为三个相关因素结构进行评估。我们还尝试单独对 ADAS-Cog 子量表进行建模,并进一步添加项目特定的潜在变量。无论是三因素相关的 ADAS-Cog 模型,还是将其视为一维的子量表,在传统的建模方法下,都无法实现纵向结构不变性。在考虑 6 个月或 2 年评估的一维性时,没有一个子量表实现了标度不变性。在考虑项目特定效应的模型中,语言和记忆子量表实现了配置和度量不变性。虽然 ADAS-Cog 的一些单项是可靠的,但由于缺乏纵向不变性,随时间推移对 ADAS-Cog 总分和子量表得分的比较可能没有意义。