Zanotti Gloria, Angelini Nicola, Mattioli Giuseppe, Paoletti Anna Maria, Pennesi Giovanna, Caschera Daniela, Sobolev Anatoly Petrovich, Beverina Luca, Calascibetta Adiel Mauro, Sanzone Alessandro, Di Carlo Aldo, Berionni Berna Beatrice, Pescetelli Sara, Agresti Antonio
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, 00015, Monterotondo, Rm, Italy.
Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, 00015, Monterotondo, Rm, Italy.
Chempluschem. 2020 Nov;85(11):2376-2386. doi: 10.1002/cplu.202000281. Epub 2020 May 14.
The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich π-conjugated macrocycles. The resulting ZnPc-BTBT and ZnPc-(BTBT) derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc-(BTBT) features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mA cm standard AM 1.5G solar illumination, ZnPc-(BTBT) gave power conversion efficiencies as high as 14.13 %, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.
采用[1]苯并噻吩并[3,2 - b][1]苯并噻吩(BTBT)平面体系对酞菁环进行功能化,旨在合成新型富电子π共轭大环化合物。所得的ZnPc - BTBT和ZnPc - (BTBT)衍生物是酞菁亚类的前两个实例,具有作为可溶液加工的p型有机半导体的潜在用途。特别地,实验表征和理论计算相结合表明,其能级排列与基于混合卤化物杂化钙钛矿的器件兼容。此外,ZnPc - (BTBT)具有高聚集倾向,这是设计致密分子膜的有用手段。当在100 mA cm标准AM 1.5G太阳光照下作为钙钛矿太阳能电池的空穴传输材料进行测试时,无论通常为实现高光伏性能所需的掺杂过程如何,ZnPc - (BTBT)都能给出高达14.13%的功率转换效率。这项工作是朝着新型酞菁核心工程化迈出的第一步,目的是获得用于有机电子学和光电子学的坚固、更高效且更具成本效益的材料。