Alonso-Olivares Hugo, Marques Margarita M, Prieto-Colomina Anna, López-Ferreras Lorena, Martínez-García Nicole, Vázquez-Jiménez Alberto, Borrell Victor, Marin Maria C, Fernandez-Alonso Rosalia
Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain.
Instituto de Desarrollo Ganadero y Sanidad Animal and Departamento de Producción Animal, Universidad de León, León, Spain.
Front Cell Dev Biol. 2024 Sep 23;12:1464932. doi: 10.3389/fcell.2024.1464932. eCollection 2024.
Neurogenesis is tightly regulated in space and time, ensuring the correct development and organization of the central nervous system. Critical regulators of brain development and morphogenesis in mice include two members of the p53 family: p53 and p73. However, dissecting the functions of these factors and their various isoforms in brain development is challenging due to their pleiotropic effects. Understanding their role, particularly in neurogenesis and brain morphogenesis, requires innovative experimental approaches.
To address these challenges, we developed an efficient and highly reproducible protocol to generate mouse brain organoids from pluripotent stem cells. These organoids contain neural progenitors and neurons that self-organize into rosette-like structures resembling the ventricular zone of the embryonic forebrain. Using this model, we generated organoids from p73-deficient mouse cells to investigate the roles of p73 and its isoforms (TA and DNp73) during brain development.
Organoids derived from p73-deficient cells exhibited increased neuronal apoptosis and reduced neural progenitor proliferation, linked to compensatory activation of p53. This closely mirrors previous observations, confirming that p73 plays a pivotal role in brain development. Further dissection of p73 isoforms function revealed a dual role of p73 in regulating brain morphogenesis, whereby TAp73 controls transcriptional programs essential for the establishment of the neurogenic niche structure, while DNp73 is responsible for the precise and timely regulation of neural cell fate. These findings highlight the distinct roles of p73 isoforms in maintaining the balance of neural progenitor cell biology, providing a new understanding of how p73 regulates brain morphogenesis.
神经发生在空间和时间上受到严格调控,以确保中枢神经系统的正确发育和组织。小鼠大脑发育和形态发生的关键调节因子包括p53家族的两个成员:p53和p73。然而,由于它们的多效性作用,剖析这些因子及其各种异构体在大脑发育中的功能具有挑战性。了解它们的作用,特别是在神经发生和大脑形态发生中的作用,需要创新的实验方法。
为应对这些挑战,我们开发了一种高效且高度可重复的方案,用于从多能干细胞生成小鼠脑类器官。这些类器官包含神经祖细胞和神经元,它们自组织成类似胚胎前脑脑室区的玫瑰花结样结构。利用这个模型,我们从p73缺陷型小鼠细胞生成类器官,以研究p73及其异构体(TA和DNp73)在大脑发育过程中的作用。
源自p73缺陷型细胞的类器官表现出神经元凋亡增加和神经祖细胞增殖减少,这与p53的代偿性激活有关。这与先前的观察结果密切相符,证实p73在大脑发育中起关键作用。对p73异构体功能的进一步剖析揭示了p73在调节大脑形态发生中的双重作用,其中TAp73控制建立神经发生微环境结构所必需的转录程序,而DNp73负责精确及时地调节神经细胞命运。这些发现突出了p73异构体在维持神经祖细胞生物学平衡中的不同作用,为p73如何调节大脑形态发生提供了新的理解。