LBME, Centre de Biologie Intégrative (CBI), CNRS, UPS, Toulouse, France.
Curr Opin Genet Dev. 2020 Apr;61:62-68. doi: 10.1016/j.gde.2020.03.006. Epub 2020 May 11.
Cells compartmentalize their genome into active and inactive parts that contain distinct histone marks and are differently packaged. Recent work has shed new light on the mechanisms that drive this type of chromatin patterning and the properties of the resulting domains. Biophysical concepts such as liquid-liquid phase separation, polymer looping and collapse, molecular crowding and viscoelasticity are increasingly used to describe experimental observations. Accordingly, it is becoming clear that the physicochemical properties of the nuclear interior are relevant for understanding chromatin compartmentalization. Here, I discuss recent insights into the properties of chromatin subcompartments obtained with complementary techniques on different scales, and relate them to models for functional chromatin patterning.
细胞将其基因组分隔成活跃和非活跃部分,这些部分包含不同的组蛋白标记,并以不同的方式包装。最近的工作揭示了驱动这种染色质模式形成的机制以及产生的域的特性。诸如液-液相分离、聚合物环化和坍塌、分子拥挤和粘弹性等生物物理概念越来越多地被用来描述实验观察结果。因此,越来越明显的是,核内部的物理化学性质对于理解染色质分隔是相关的。在这里,我讨论了利用不同尺度的互补技术获得的染色质亚区的特性的最新见解,并将它们与功能染色质模式形成的模型联系起来。