Suppr超能文献

大规模网络分析捕获了细菌质粒的生物学特征。

Large-scale network analysis captures biological features of bacterial plasmids.

机构信息

UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.

Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.

出版信息

Nat Commun. 2020 May 15;11(1):2452. doi: 10.1038/s41467-020-16282-w.

Abstract

Many bacteria can exchange genetic material through horizontal gene transfer (HGT) mediated by plasmids and plasmid-borne transposable elements. Here, we study the population structure and dynamics of over 10,000 bacterial plasmids, by quantifying their genetic similarities and reconstructing a network based on their shared k-mer content. We use a community detection algorithm to assign plasmids into cliques, which correlate with plasmid gene content, bacterial host range, GC content, and existing classifications based on replicon and mobility (MOB) types. Further analysis of plasmid population structure allows us to uncover candidates for yet undescribed replicon genes, and to identify transposable elements as the main drivers of HGT at broad phylogenetic scales. Our work illustrates the potential of network-based analyses of the bacterial 'mobilome' and opens up the prospect of a natural, exhaustive classification framework for bacterial plasmids.

摘要

许多细菌可以通过质粒和质粒携带的可移动元件介导的水平基因转移(HGT)来交换遗传物质。在这里,我们通过量化它们的遗传相似性并基于它们共享的 k-mer 内容构建网络,来研究超过 10000 个细菌质粒的种群结构和动态。我们使用社区检测算法将质粒分配到与质粒基因内容、细菌宿主范围、GC 含量以及基于复制子和可移动性(MOB)类型的现有分类相关的类中。对质粒种群结构的进一步分析使我们能够发现尚未描述的复制子基因的候选者,并确定转座元件是广泛的系统发育范围内 HGT 的主要驱动因素。我们的工作说明了基于网络的细菌“可移动组”分析的潜力,并为细菌质粒开辟了自然、详尽的分类框架的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a91/7229196/ea66725faa32/41467_2020_16282_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验