Suppr超能文献

并且 是胰腺癌诊断和预后的潜在生物标志物。

and Are Potential Biomarkers for the Diagnosis and Prognosis of Pancreatic Cancer.

机构信息

Lanzhou University, Lanzhou, Gansu Province 730030, China.

Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province 730030, China.

出版信息

Biomed Res Int. 2020 Apr 28;2020:8604340. doi: 10.1155/2020/8604340. eCollection 2020.

Abstract

Pancreatic cancer (PC) is one of the most malignant tumors. Despite considerable progress in the treatment of PC, the prognosis of patients with PC is poor. The aim of this study was to identify potential biomarkers for the diagnosis and prognosis of PC. First, the original data of three independent mRNA expression datasets were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases and screened for differentially expressed genes (DEGs) using the R software. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the DEGs were performed, and a protein-protein interaction (PPI) network was constructed to screen for hub genes. The hub genes were analyzed for genetic variations, as well as for survival, prognostic, and diagnostic value, using the cBioPortal and Gene Expression Profiling Interactive Analysis (GEPIA) databases and the pROC package. After screening for potential biomarkers, the mRNA and protein levels of the biomarkers were verified at the tissue and cellular levels using the Cancer Cell Line Encyclopedia, GEPIA, and the Human Protein Atlas. As a result, a total of 248 DEGs were identified. The GO terms enriched in DEGs were related to the separation of mitotic sister chromatids and the binding of the spindle to the extracellular matrix. The enriched pathways were associated with focal adhesion, ECM-receptor interaction, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling. The top 20 genes were selected from the PPI network as hub genes, and based on the analysis of multiple databases, MCM2 and NUSAP1 were identified as potential biomarkers for the diagnosis and prognosis of PC. In conclusion, our results show that MCM2 and NUSAP1 can be used as potential biomarkers for the diagnosis and prognosis of PC. The study also provides new insights into the underlying molecular mechanisms of PC.

摘要

胰腺癌(PC)是最恶性的肿瘤之一。尽管在 PC 的治疗方面取得了相当大的进展,但 PC 患者的预后仍然很差。本研究旨在确定用于 PC 的诊断和预后的潜在生物标志物。首先,从基因表达综合数据库和癌症基因组图谱数据库下载了三个独立的 mRNA 表达数据集的原始数据,并使用 R 软件筛选差异表达基因(DEG)。随后,对 DEG 进行了基因本体论(GO)和京都基因与基因组百科全书通路富集分析,并构建了蛋白质-蛋白质相互作用(PPI)网络以筛选枢纽基因。使用 cBioPortal 和基因表达谱交互式分析(GEPIA)数据库和 pROC 包分析枢纽基因的遗传变异、生存、预后和诊断价值。筛选出潜在的生物标志物后,使用癌症细胞系百科全书、GEPIA 和人类蛋白质图谱在组织和细胞水平上验证了生物标志物的 mRNA 和蛋白水平。结果,共鉴定出 248 个 DEG。DEG 中富集的 GO 术语与有丝分裂姐妹染色单体的分离和纺锤体与细胞外基质的结合有关。富集的途径与焦点粘连、ECM-受体相互作用和磷脂酰肌醇 3-激酶(PI3K)/AKT 信号有关。从 PPI 网络中选择前 20 个基因作为枢纽基因,通过对多个数据库的分析,鉴定出 MCM2 和 NUSAP1 是 PC 诊断和预后的潜在生物标志物。总之,我们的结果表明,MCM2 和 NUSAP1 可以用作 PC 诊断和预后的潜在生物标志物。该研究还为 PC 的潜在分子机制提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4694/7206867/081464948868/BMRI2020-8604340.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验