Suppr超能文献

五种与宫颈癌诊断和预后相关的候选生物标志物。

Five candidate biomarkers associated with the diagnosis and prognosis of cervical cancer.

作者信息

Han Hong-Yan, Mou Jiang-Tao, Jiang Wen-Ping, Zhai Xiu-Ming, Deng Kun

机构信息

Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China.

出版信息

Biosci Rep. 2021 Mar 26;41(3). doi: 10.1042/BSR20204394.

Abstract

PURPOSE

Cervical cancer (CC) is one of the most general gynecological malignancies and is associated with high morbidity and mortality. We aimed to select candidate genes related to the diagnosis and prognosis of CC.

METHODS

The mRNA expression profile datasets were downloaded. We also downloaded RNA-sequencing gene expression data and related clinical materials from TCGA, which included 307 CC samples and 3 normal samples. Differentially expressed genes (DEGs) were obtained by R software. GO function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed in the DAVID dataset. Using machine learning, the optimal diagnostic mRNA biomarkers for CC were identified. We used qRT-PCR and Human Protein Atlas (HPA) database to exhibit the differences in gene and protein levels of candidate genes.

RESULTS

A total of 313 DEGs were screened from the microarray expression profile datasets. DNA methyltransferase 1 (DNMT1), Chromatin Assembly Factor 1, subunit B (CHAF1B), Chromatin Assembly Factor 1, subunit A (CHAF1A), MCM2, CDKN2A were identified as optimal diagnostic mRNA biomarkers for CC. Additionally, the GEPIA database showed that the DNMT1, CHAF1B, CHAF1A, MCM2 and CDKN2A were associated with the poor survival of CC patients. HPA database and qRT-PCR confirmed that these genes were highly expressed in CC tissues.

CONCLUSION

The present study identified five DEmRNAs, including DNMT1, CHAF1B, CHAF1A, MCM2 and Kinetochore-related protein 1 (KNTC1), as potential diagnostic and prognostic biomarkers of CC.

摘要

目的

宫颈癌(CC)是最常见的妇科恶性肿瘤之一,其发病率和死亡率都很高。我们旨在筛选与CC诊断和预后相关的候选基因。

方法

下载mRNA表达谱数据集。我们还从TCGA下载了RNA测序基因表达数据及相关临床资料,其中包括307例CC样本和3例正常样本。通过R软件获得差异表达基因(DEG)。在DAVID数据集中对DEG进行基因本体(GO)功能分析和京都基因与基因组百科全书(KEGG)通路富集分析。利用机器学习确定CC的最佳诊断mRNA生物标志物。我们使用qRT-PCR和人类蛋白质图谱(HPA)数据库展示候选基因在基因和蛋白质水平上的差异。

结果

从微阵列表达谱数据集中共筛选出313个DEG。DNA甲基转移酶1(DNMT1)、染色质组装因子1亚基B(CHAF1B)、染色质组装因子1亚基A(CHAF1A)、微小染色体维持蛋白2(MCM2)、细胞周期蛋白依赖性激酶抑制剂2A(CDKN2A)被确定为CC的最佳诊断mRNA生物标志物。此外,GEPIA数据库显示DNMT1、CHAF1B、CHAF1A、MCM2和CDKN2A与CC患者的不良生存相关。HPA数据库和qRT-PCR证实这些基因在CC组织中高表达。

结论

本研究确定了5个差异表达mRNA,包括DNMT1、CHAF1B、CHAF1A、MCM2和动粒相关蛋白1(KNTC1),作为CC潜在的诊断和预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca2/7955105/818343ade381/bsr-41-bsr20204394-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验