De Wit Pierre, Jonsson Per R, Pereyra Ricardo T, Panova Marina, André Carl, Johannesson Kerstin
Department of Marine Sciences University of Gothenburg Tjärnö Sweden.
Environmental and Marine Biology Åbo Akademi University Turku Finland.
Evol Appl. 2020 Feb 5;13(5):974-990. doi: 10.1111/eva.12914. eCollection 2020 May.
Incorporating species' eco-evolutionary responses to human-caused disturbances remains a challenge in marine management efforts. A prerequisite is knowledge of geographic structure and scale of genetic diversity and connectivity-the so-called seascape genetic patterns. The Baltic Sea is an excellent model system for studies linking seascape genetics with effects of anthropogenic stress. However, seascape genetic patterns in this area are only described for a few species and are completely unknown for invertebrate herbivores, which constitute a critical part of the ecosystem. This information is crucial for sustainable management, particularly under future scenarios of rapid environmental change. Here, we investigate the population genetic structure among 31 locations throughout the Baltic Sea, of which 45% were located in marine protected areas, in one of the most important herbivores of this region, the isopod crustacean , using an array of 33,774 genome-wide SNP markers derived from 2b-RAD sequencing. In addition, we generate a biophysical connectivity matrix for from a combination of oceanographic current models and estimated life history traits. We find population structure on scales of hundreds of kilometers across the Baltic Sea, where genomic patterns in most cases closely match biophysical connectivity, indicating passive transport with oceanographic currents as an important mean of dispersal in this species. We also find a reduced genetic diversity in terms of heterozygosity along the main salinity gradient of the Baltic Sea, suggesting periods of low population size. Our results provide crucial information for the management of a key ecosystem species under expected changes in temperature and salinity following global climate change in a marine coastal area.
在海洋管理工作中,纳入物种对人为干扰的生态进化反应仍然是一项挑战。一个先决条件是了解遗传多样性和连通性的地理结构及规模,即所谓的海景观遗传模式。波罗的海是将海景观遗传学与人为压力影响联系起来进行研究的绝佳模型系统。然而,该地区的海景观遗传模式仅在少数物种中得到描述,对于构成生态系统关键部分的无脊椎食草动物来说则完全未知。这些信息对于可持续管理至关重要,尤其是在未来环境快速变化的情况下。在这里,我们利用从2b-RAD测序获得的一系列33774个全基因组SNP标记,研究了波罗的海31个地点的种群遗传结构,其中45%位于海洋保护区,研究对象是该地区最重要的食草动物之一——等足类甲壳动物。此外,我们结合海洋环流模型和估计的生活史特征,为该等足类动物生成了一个生物物理连通性矩阵。我们发现,在波罗的海数百公里的尺度上存在种群结构,在大多数情况下,基因组模式与生物物理连通性密切匹配,这表明随着海洋环流的被动运输是该物种扩散的重要方式。我们还发现,沿着波罗的海主要盐度梯度,杂合度方面的遗传多样性有所降低,这表明种群规模曾有过较低时期。我们的研究结果为在海洋沿海地区全球气候变化导致温度和盐度预期变化的情况下,管理关键生态系统物种提供了至关重要的信息。