Suppr超能文献

微应激生态瞬时评估:一种用于检测孕期母亲日常应激的被动传感框架。

micro-Stress EMA: A Passive Sensing Framework for Detecting in-the-wild Stress in Pregnant Mothers.

作者信息

King Zachary D, Moskowitz Judith, Egilmez Begum, Zhang Shibo, Zhang Lida, Bass Michael, Rogers John, Ghaffari Roozbeh, Wakschlag Laurie, Alshurafa Nabil

机构信息

Northwestern University, United States.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Sep;3(3). doi: 10.1145/3351249.

Abstract

High levels of stress during pregnancy increase the chances of having a premature or low-birthweight baby. Perceived self-reported stress does not often capture or align with the physiological and behavioral response. But what if there was a self-report measure that could better capture the physiological response? Current perceived stress self-report assessments require users to answer multi-item scales at different time points of the day. Reducing it to one question, using microinteraction-based ecological momentary assessment (micro-EMA, collecting a single self-report to assess behaviors) allows us to identify smaller or more subtle changes in physiology. It also allows for more frequent responses to capture perceived stress while at the same time reducing burden on the participant. We propose a framework for selecting the optimal micro-EMA that combines unbiased feature selection and unsupervised Agglomerative clustering. We test our framework in 18 women performing 16 activities in-lab wearing a Biostamp, a NeuLog, and a Polar chest strap. We validated our results in 17 pregnant women in real-world settings. Our framework shows that the question "How worried were you?" results in the highest accuracy when using a physiological model. Our results provide further in-depth exposure to the challenges of evaluating stress models in real-world situations.

摘要

孕期的高压力水平会增加早产或生出低体重儿的几率。自我报告的感知压力往往无法反映或与生理和行为反应相一致。但如果有一种自我报告测量方法能够更好地反映生理反应呢?当前的感知压力自我报告评估要求用户在一天中的不同时间点回答多项量表。将其简化为一个问题,采用基于微交互的生态瞬时评估法(微EMA,收集单一自我报告以评估行为),使我们能够识别生理上更小或更细微的变化。它还能让参与者更频繁地做出反应以捕捉感知到的压力,同时减轻参与者的负担。我们提出了一个选择最佳微EMA的框架,该框架结合了无偏特征选择和无监督凝聚聚类。我们在18名女性身上测试了我们的框架,她们在实验室中佩戴生物印章、NeuLog和极地胸带进行16项活动。我们在17名孕妇的现实生活环境中验证了我们的结果。我们的框架表明,当使用生理模型时,“你有多担心?”这个问题的准确率最高。我们的结果进一步深入揭示了在现实情况下评估压力模型所面临的挑战。

相似文献

1
micro-Stress EMA: A Passive Sensing Framework for Detecting in-the-wild Stress in Pregnant Mothers.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Sep;3(3). doi: 10.1145/3351249.
3
Evaluation of Ecological Momentary Assessment for Tinnitus Severity.
JAMA Otolaryngol Head Neck Surg. 2017 Jul 1;143(7):700-706. doi: 10.1001/jamaoto.2017.0020.

引用本文的文献

1
Current challenges and opportunities in active and passive data collection for mobile health sensing: a scoping review.
JAMIA Open. 2025 Jul 18;8(4):ooaf025. doi: 10.1093/jamiaopen/ooaf025. eCollection 2025 Aug.
2
Contextual Biases in Microinteraction Ecological Momentary Assessment (μEMA) Non-response.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2022 Mar;6(1). doi: 10.1145/3517259. Epub 2022 Mar 29.
3
Wearable network for multilevel physical fatigue prediction in manufacturing workers.
PNAS Nexus. 2024 Oct 15;3(10):pgae421. doi: 10.1093/pnasnexus/pgae421. eCollection 2024 Oct.
4
Recent Progress in Biosensors for Depression Monitoring-Advancing Personalized Treatment.
Biosensors (Basel). 2024 Aug 30;14(9):422. doi: 10.3390/bios14090422.
6
Perception of Whole Day Workload as a Mediator Between Activity Engagement and Stress in Workers with Type 1 Diabetes.
Theor Issues Ergon Sci. 2024;25(1):67-85. doi: 10.1080/1463922x.2022.2149878. Epub 2022 Nov 28.
7
K-EmoPhone: A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and Attention Labels.
Sci Data. 2023 Jun 2;10(1):351. doi: 10.1038/s41597-023-02248-2.
9
Evaluating the Reproducibility of Physiological Stress Detection Models.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Dec;4(4). doi: 10.1145/3432220. Epub 2020 Dec 18.
10
Prenatal stress assessment using heart rate variability and salivary cortisol: A machine learning-based approach.
PLoS One. 2022 Sep 9;17(9):e0274298. doi: 10.1371/journal.pone.0274298. eCollection 2022.

本文引用的文献

1
μEMA: Microinteraction-based Ecological Momentary Assessment (EMA) Using a Smartwatch.
Proc ACM Int Conf Ubiquitous Comput. 2016 Sep;2016:1124-1128. doi: 10.1145/2971648.2971717.
2
Microinteraction Ecological Momentary Assessment Response Rates: Effect of Microinteractions or the Smartwatch?
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017 Sep;1(3). doi: 10.1145/3130957.
3
Stress, overeating, and obesity: Insights from human studies and preclinical models.
Neurosci Biobehav Rev. 2017 May;76(Pt A):154-162. doi: 10.1016/j.neubiorev.2017.01.026. Epub 2017 Mar 11.
4
Does MAOA increase susceptibility to prenatal stress in young children?
Neurotoxicol Teratol. 2017 May;61:82-91. doi: 10.1016/j.ntt.2017.01.005. Epub 2017 Feb 3.
5
Developmental pathways from prenatal tobacco and stress exposure to behavioral disinhibition.
Neurotoxicol Teratol. 2016 Jan-Feb;53:64-74. doi: 10.1016/j.ntt.2015.11.009. Epub 2015 Nov 25.
6
cStress: Towards a Gold Standard for Continuous Stress Assessment in the Mobile Environment.
Proc ACM Int Conf Ubiquitous Comput. 2015 Sep;2015:493-504. doi: 10.1145/2750858.2807526.
7
A new paradigm to induce mental stress: the Sing-a-Song Stress Test (SSST).
Front Neurosci. 2014 Jul 29;8:224. doi: 10.3389/fnins.2014.00224. eCollection 2014.
8
Anxiety, depression and stress in pregnancy: implications for mothers, children, research, and practice.
Curr Opin Psychiatry. 2012 Mar;25(2):141-8. doi: 10.1097/YCO.0b013e3283503680.
9
Development and evaluation of an ambulatory stress monitor based on wearable sensors.
IEEE Trans Inf Technol Biomed. 2012 Mar;16(2):279-86. doi: 10.1109/TITB.2011.2169804. Epub 2011 Sep 29.
10
Prenatal stress and developmental programming of human health and disease risk: concepts and integration of empirical findings.
Curr Opin Endocrinol Diabetes Obes. 2010 Dec;17(6):507-16. doi: 10.1097/MED.0b013e3283405921.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验