Am J Epidemiol. 2020 Nov 2;189(11):1412-1420. doi: 10.1093/aje/kwaa089.
Instrumental variable (IV) analyses are becoming common in health services research and epidemiology. Most IV analyses use naturally occurring instruments, such as distance to a hospital. In these analyses, investigators must assume that the instrument is as-if randomly assigned. This assumption cannot be tested directly, but it can be falsified. Most IV falsification tests compare relative prevalence or bias in observed covariates between the instrument and exposure. These tests require investigators to make covariate-by-covariate judgments about the validity of the IV design. Often, only some covariates are well-balanced, making it unclear whether as-if randomization can be assumed for the instrument. We propose an alternative falsification test that compares IV balance or bias with the balance or bias that would have been produced under randomization. A key advantage of our test is that it allows for global balance measures as well as easily interpretable graphical comparisons. Furthermore, our test does not rely on parametric assumptions and can be used to validly assess whether the instrument is significantly closer to being as-if randomized than the exposure. We demonstrate our approach using data from (SPOT)light, a prospective cohort study carried out in 48 National Health Service hospitals in the United Kingdom between November 1, 2010, and December 31, 2011. This study used bed availability in the intensive care unit as an instrument for admission to the intensive care unit.
工具变量(IV)分析在卫生服务研究和流行病学中越来越普遍。大多数 IV 分析使用自然发生的工具,如到医院的距离。在这些分析中,研究人员必须假设工具是随机分配的。这个假设不能直接检验,但可以被证伪。大多数 IV 证伪检验比较观察到的协变量在工具和暴露之间的相对流行率或偏差。这些检验要求研究人员对 IV 设计的有效性进行逐个协变量的判断。通常,只有一些协变量是均衡的,这使得无法确定工具是否可以假设为随机分配。我们提出了一种替代的证伪检验方法,该方法比较 IV 的均衡或偏差与随机化产生的均衡或偏差。我们的检验的一个关键优势是它允许进行全局均衡度量以及易于解释的图形比较。此外,我们的检验不依赖于参数假设,并且可以用于有效地评估工具是否比暴露更接近随机分配。我们使用 2010 年 11 月 1 日至 2011 年 12 月 31 日在英国 48 家国家卫生服务医院进行的前瞻性队列研究(SPOT)light 的数据演示了我们的方法。该研究使用重症监护病房的床位可用性作为重症监护病房入院的工具。