MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.
Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
Eur J Epidemiol. 2024 Aug;39(8):843-855. doi: 10.1007/s10654-024-01097-6. Epub 2024 Feb 29.
Mendelian randomization may give biased causal estimates if the instrument affects the outcome not solely via the exposure of interest (violating the exclusion restriction assumption). We demonstrate use of a global randomization test as a falsification test for the exclusion restriction assumption. Using simulations, we explored the statistical power of the randomization test to detect an association between a genetic instrument and a covariate set due to (a) selection bias or (b) horizontal pleiotropy, compared to three approaches examining associations with individual covariates: (i) Bonferroni correction for the number of covariates, (ii) correction for the effective number of independent covariates, and (iii) an r permutation-based approach. We conducted proof-of-principle analyses in UK Biobank, using CRP as the exposure and coronary heart disease (CHD) as the outcome. In simulations, power of the randomization test was higher than the other approaches for detecting selection bias when the correlation between the covariates was low (r < 0.1), and at least as powerful as the other approaches across all simulated horizontal pleiotropy scenarios. In our applied example, we found strong evidence of selection bias using all approaches (e.g., global randomization test p < 0.002). We identified 51 of the 58 CRP genetic variants as horizontally pleiotropic, and estimated effects of CRP on CHD attenuated somewhat to the null when excluding these from the genetic risk score (OR = 0.96 [95% CI: 0.92, 1.00] versus 0.97 [95% CI: 0.90, 1.05] per 1-unit higher log CRP levels). The global randomization test can be a useful addition to the MR researcher's toolkit.
孟德尔随机化可能会产生有偏差的因果估计结果,如果工具变量不仅通过感兴趣的暴露(违反排除限制假设)影响结果。我们展示了使用全局随机化检验作为排除限制假设的验证检验。通过模拟,我们探讨了随机化检验检测遗传工具与协变量集之间关联的统计功效,原因是(a)选择偏差或(b)水平多效性,与三种检查与单个协变量关联的方法进行比较:(i)针对协变量数量进行 Bonferroni 校正,(ii)针对有效独立协变量数量进行校正,以及(iii)基于 r 置换的方法。我们在 UK Biobank 中进行了原理验证分析,将 CRP 作为暴露,冠心病(CHD)作为结局。在模拟中,当协变量之间的相关性较低(r < 0.1)时,随机化检验的功效高于其他方法,用于检测选择偏差,并且在所有模拟水平多效性情况下,其功效至少与其他方法一样高。在我们的应用实例中,我们使用所有方法都发现了强烈的选择偏差证据(例如,全局随机化检验 p < 0.002)。我们发现了 58 个 CRP 遗传变异中的 51 个为水平多效性,并且当从遗传风险评分中排除这些变异时,CRP 对 CHD 的影响在一定程度上减弱到零(OR = 0.96 [95% CI:0.92, 1.00],每增加 1 单位 log CRP 水平)。全局随机化检验可以成为 MR 研究人员工具包的有用补充。