Suppr超能文献

概率预测和贝叶斯学习的障碍可以解释精神分裂症中神经语义启动的减少。

Impairments in Probabilistic Prediction and Bayesian Learning Can Explain Reduced Neural Semantic Priming in Schizophrenia.

机构信息

Department of Psychology, Tufts University, Medford, MA.

Department of Neurobiology of Language, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.

出版信息

Schizophr Bull. 2020 Dec 1;46(6):1558-1566. doi: 10.1093/schbul/sbaa069.

Abstract

It has been proposed that abnormalities in probabilistic prediction and dynamic belief updating explain the multiple features of schizophrenia. Here, we used electroencephalography (EEG) to ask whether these abnormalities can account for the well-established reduction in semantic priming observed in schizophrenia under nonautomatic conditions. We isolated predictive contributions to the neural semantic priming effect by manipulating the prime's predictive validity and minimizing retroactive semantic matching mechanisms. We additionally examined the link between prediction and learning using a Bayesian model that probed dynamic belief updating as participants adapted to the increase in predictive validity. We found that patients were less likely than healthy controls to use the prime to predictively facilitate semantic processing on the target, resulting in a reduced N400 effect. Moreover, the trial-by-trial output of our Bayesian computational model explained between-group differences in trial-by-trial N400 amplitudes as participants transitioned from conditions of lower to higher predictive validity. These findings suggest that, compared with healthy controls, people with schizophrenia are less able to mobilize predictive mechanisms to facilitate processing at the earliest stages of accessing the meanings of incoming words. This deficit may be linked to a failure to adapt to changes in the broader environment. This reciprocal relationship between impairments in probabilistic prediction and Bayesian learning/adaptation may drive a vicious cycle that maintains cognitive disturbances in schizophrenia.

摘要

有人提出,概率预测和动态信念更新的异常解释了精神分裂症的多种特征。在这里,我们使用脑电图(EEG)来询问这些异常是否可以解释在非自动条件下观察到的精神分裂症中语义启动明显减少的现象。我们通过操纵启动的预测有效性并最小化回溯性语义匹配机制来分离对神经语义启动效应的预测贡献。我们还使用贝叶斯模型检查了预测和学习之间的联系,该模型在参与者适应预测有效性的增加时探测动态信念更新。我们发现,与健康对照组相比,患者不太可能利用启动来预测性地促进目标上的语义处理,从而导致 N400 效应降低。此外,我们的贝叶斯计算模型的逐次试验输出解释了参与者从预测有效性较低的条件过渡到较高条件时,逐次试验 N400 幅度的组间差异。这些发现表明,与健康对照组相比,精神分裂症患者在利用预测机制来促进输入单词含义的早期处理方面的能力较低。这种缺陷可能与无法适应更广泛环境的变化有关。概率预测和贝叶斯学习/适应之间的这种相互关系可能会导致维持精神分裂症认知障碍的恶性循环。

相似文献

6
An incongruent reality: the N400 in relation to psychosis and recovery.一种不一致的现实:与精神病及康复相关的N400
Schizophr Res. 2014 Dec;160(1-3):208-15. doi: 10.1016/j.schres.2014.09.039. Epub 2014 Oct 22.

本文引用的文献

1
A simple model for learning in volatile environments.在不稳定环境中学习的一种简单模型。
PLoS Comput Biol. 2020 Jul 1;16(7):e1007963. doi: 10.1371/journal.pcbi.1007963. eCollection 2020 Jul.
4
Attractor-like Dynamics in Belief Updating in Schizophrenia.精神分裂症中信念更新的吸引子动力学。
J Neurosci. 2018 Oct 31;38(44):9471-9485. doi: 10.1523/JNEUROSCI.3163-17.2018. Epub 2018 Sep 5.
6
The Predictive Coding Account of Psychosis.精神病的预测编码理论。
Biol Psychiatry. 2018 Nov 1;84(9):634-643. doi: 10.1016/j.biopsych.2018.05.015. Epub 2018 May 25.
10
What do we mean by prediction in language comprehension?我们所说的语言理解中的预测是什么意思?
Lang Cogn Neurosci. 2016;31(1):32-59. doi: 10.1080/23273798.2015.1102299. Epub 2015 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验