Suppr超能文献

使用U-Net和U-Net3+模型进行高效的脑梗死分割

Efficient Cerebral Infarction Segmentation Using U-Net and U-Net3 + Models.

作者信息

Yuce Esra, Sahin Muhammet Emin, Ulutas Hasan, Erkoç Mustafa Fatih

机构信息

Department of Computer Engineering, Yozgat Bozok University, Yozgat, Turkey.

Department of Radiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey.

出版信息

J Imaging Inform Med. 2025 Jun 30. doi: 10.1007/s10278-025-01587-3.

Abstract

Cerebral infarction remains a leading cause of mortality and long-term disability globally, underscoring the critical importance of early diagnosis and timely intervention to enhance patient outcomes. This study introduces a novel approach to cerebral infarction segmentation using a novel dataset comprising MRI scans of 110 patients, retrospectively collected from Yozgat Bozok University Research Hospital. Two convolutional neural network architectures, the basic U-Net and the advanced U-Net3 + , are employed to segment infarction regions with high precision. Ground-truth annotations are generated under the supervision of an experienced radiologist, and data augmentation techniques are applied to address dataset limitations, resulting in 6732 balanced images for training, validation, and testing. Performance evaluation is conducted using metrics such as the dice score, Intersection over Union (IoU), pixel accuracy, and specificity. The basic U-Net achieved superior performance with a dice score of 0.8947, a mean IoU of 0.8798, a pixel accuracy of 0.9963, and a specificity of 0.9984, outperforming U-Net3 + despite its simpler architecture. U-Net3 + , with its complex structure and advanced features, delivered competitive results, highlighting the potential trade-off between model complexity and performance in medical imaging tasks. This study underscores the significance of leveraging deep learning for precise and efficient segmentation of cerebral infarction. The results demonstrate the capability of CNN-based architectures to support medical decision-making, offering a promising pathway for advancing stroke diagnosis and treatment planning.

摘要

脑梗死仍然是全球范围内导致死亡和长期残疾的主要原因,这凸显了早期诊断和及时干预对于改善患者预后的至关重要性。本研究采用一种新方法对脑梗死进行分割,使用了一个新数据集,该数据集包含从约兹加特博佐克大学研究医院回顾性收集的110例患者的MRI扫描图像。采用了两种卷积神经网络架构,即基本U-Net和先进的U-Net3+,以高精度分割梗死区域。在经验丰富的放射科医生的监督下生成真实标注,并应用数据增强技术来解决数据集的局限性,从而得到6732张用于训练、验证和测试的平衡图像。使用诸如骰子系数、交并比(IoU)、像素准确率和特异性等指标进行性能评估。基本U-Net取得了卓越的性能,骰子系数为0.8947,平均IoU为0.8798,像素准确率为0.9963,特异性为0.9984,尽管其架构更简单,但性能优于U-Net3+。具有复杂结构和先进特征的U-Net3+也取得了具有竞争力的结果,凸显了医学成像任务中模型复杂性与性能之间潜在的权衡。本研究强调了利用深度学习进行脑梗死精确高效分割的重要性。结果表明基于卷积神经网络的架构能够支持医学决策,为推进中风诊断和治疗规划提供了一条有前景的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验