Suppr超能文献

机器学习在使用常规苏木精和伊红染色切片的结直肠癌中识别免疫细胞群体的预后意义。

Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin-Stained Sections.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.

Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

Clin Cancer Res. 2020 Aug 15;26(16):4326-4338. doi: 10.1158/1078-0432.CCR-20-0071. Epub 2020 May 21.

Abstract

PURPOSE

Although high T-cell density is a well-established favorable prognostic factor in colorectal cancer, the prognostic significance of tumor-associated plasma cells, neutrophils, and eosinophils is less well-defined.

EXPERIMENTAL DESIGN

We computationally processed digital images of hematoxylin and eosin (H&E)-stained sections to identify lymphocytes, plasma cells, neutrophils, and eosinophils in tumor intraepithelial and stromal areas of 934 colorectal cancers in two prospective cohort studies. Multivariable Cox proportional hazards regression was used to compute mortality HR according to cell density quartiles. The spatial patterns of immune cell infiltration were studied using the G function, which estimates the likelihood of any tumor cell in a sample having at least one neighboring immune cell of the specified type within a certain radius. Validation studies were performed on an independent cohort of 570 colorectal cancers.

RESULTS

Immune cell densities measured by the automated classifier demonstrated high correlation with densities both from manual counts and those obtained from an independently trained automated classifier (Spearman's ρ 0.71-0.96). High densities of stromal lymphocytes and eosinophils were associated with better cancer-specific survival [ < 0.001; multivariable HR (4th vs 1st quartile of eosinophils), 0.49; 95% confidence interval, 0.34-0.71]. High G area under the curve (AUC; = 0.002) and high G AUC ( < 0.001) also showed associations with better cancer-specific survival. High stromal eosinophil density was also associated with better cancer-specific survival in the validation cohort ( < 0.001).

CONCLUSIONS

These findings highlight the potential for machine learning assessment of H&E-stained sections to provide robust, quantitative tumor-immune biomarkers for precision medicine.

摘要

目的

尽管高 T 细胞密度是结直肠癌中一个既定的有利预后因素,但肿瘤相关浆细胞、中性粒细胞和嗜酸性粒细胞的预后意义尚未得到明确界定。

实验设计

我们通过计算处理苏木精和伊红(H&E)染色切片的数字图像,在两项前瞻性队列研究中的 934 例结直肠癌的肿瘤上皮内和基质区域中识别淋巴细胞、浆细胞、中性粒细胞和嗜酸性粒细胞。多变量 Cox 比例风险回归用于根据细胞密度四分位数计算死亡率 HR。使用 G 函数研究免疫细胞浸润的空间模式,该函数估计样本中任何肿瘤细胞在特定半径内至少有一个指定类型的相邻免疫细胞的可能性。在一个独立的 570 例结直肠癌队列中进行了验证研究。

结果

通过自动分类器测量的免疫细胞密度与手动计数和使用独立训练的自动分类器获得的密度高度相关(Spearman's ρ 0.71-0.96)。基质淋巴细胞和嗜酸性粒细胞密度高与癌症特异性生存率提高相关[<0.001;第 4 四分位与第 1 四分位嗜酸性粒细胞的多变量 HR(四分位),0.49;95%置信区间,0.34-0.71]。高 G 曲线下面积(AUC;=0.002)和高 G AUC(<0.001)也与癌症特异性生存率提高相关。在验证队列中,高基质嗜酸性粒细胞密度也与癌症特异性生存率提高相关(<0.001)。

结论

这些发现强调了机器学习评估 H&E 染色切片的潜力,可以为精准医学提供强大、定量的肿瘤免疫生物标志物。

相似文献

引用本文的文献

7
Landscape of B lymphocytes and plasma cells in digestive tract carcinomas.消化道癌中B淋巴细胞和浆细胞的情况
Ann Gastroenterol. 2025 Jan-Feb;38(1):1-11. doi: 10.20524/aog.2024.0936. Epub 2024 Dec 12.

本文引用的文献

1
3
Redefine statistical significance.重新定义统计学显著性。
Nat Hum Behav. 2018 Jan;2(1):6-10. doi: 10.1038/s41562-017-0189-z.
5
7
Machine Learning Methods for Histopathological Image Analysis.用于组织病理学图像分析的机器学习方法
Comput Struct Biotechnol J. 2018 Feb 9;16:34-42. doi: 10.1016/j.csbj.2018.01.001. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验