Suppr超能文献

溶液处理异质结氧化物薄膜晶体管的最新进展

Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors.

作者信息

Li Yanwei, Zhao Chun, Zhu Deliang, Cao Peijiang, Han Shun, Lu Youming, Fang Ming, Liu Wenjun, Xu Wangying

机构信息

Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China.

Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.

出版信息

Nanomaterials (Basel). 2020 May 18;10(5):965. doi: 10.3390/nano10050965.

Abstract

Thin-film transistors (TFTs) made of metal oxide semiconductors are now increasingly used in flat-panel displays. Metal oxides are mainly fabricated via vacuum-based technologies, but solution approaches are of great interest due to the advantages of low-cost and high-throughput manufacturing. Unfortunately, solution-processed oxide TFTs suffer from relatively poor electrical performance, hindering further development. Recent studies suggest that this issue could be solved by introducing a novel heterojunction strategy. This article reviews the recent advances in solution-processed heterojunction oxide TFTs, with a specific focus on the latest developments over the past five years. Two of the most prominent advantages of heterostructure oxide TFTs are discussed, namely electrical-property modulation and mobility enhancement by forming 2D electron gas. It is expected that this review will manifest the strong potential of solution-based heterojunction oxide TFTs towards high performance and large-scale electronics.

摘要

由金属氧化物半导体制成的薄膜晶体管(TFT)如今在平板显示器中得到越来越广泛的应用。金属氧化物主要通过基于真空的技术制造,但由于低成本和高通量制造的优势,溶液法备受关注。不幸的是,溶液处理的氧化物TFT的电性能相对较差,这阻碍了其进一步发展。最近的研究表明,通过引入一种新型异质结策略可以解决这个问题。本文综述了溶液处理的异质结氧化物TFT的最新进展,特别关注过去五年的最新发展。讨论了异质结构氧化物TFT的两个最突出优点,即通过形成二维电子气实现电性能调制和迁移率增强。预计这篇综述将展现基于溶液的异质结氧化物TFT在高性能和大规模电子器件方面的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c989/7325575/da7a3cc34894/nanomaterials-10-00965-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验