Suppr超能文献

使用现实生活中的静态面部图像评估大五人格特质。

Assessing the Big Five personality traits using real-life static facial images.

机构信息

Artificial Intelligence LLC (AIPictor), BP Mirland, 2-ya Khutorskaya ul. 38Ас15, Moscow, 127287, Russia.

National Research University Higher School of Economics, Department of Psychology, International Laboratory of Positive Psychology of Personality and Motivation, Myasnitskaya ul. 20, Moscow, 101000, Russia.

出版信息

Sci Rep. 2020 May 22;10(1):8487. doi: 10.1038/s41598-020-65358-6.

Abstract

There is ample evidence that morphological and social cues in a human face provide signals of human personality and behaviour. Previous studies have discovered associations between the features of artificial composite facial images and attributions of personality traits by human experts. We present new findings demonstrating the statistically significant prediction of a wider set of personality features (all the Big Five personality traits) for both men and women using real-life static facial images. Volunteer participants (N = 12,447) provided their face photographs (31,367 images) and completed a self-report measure of the Big Five traits. We trained a cascade of artificial neural networks (ANNs) on a large labelled dataset to predict self-reported Big Five scores. The highest correlations between observed and predicted personality scores were found for conscientiousness (0.360 for men and 0.335 for women) and the mean effect size was 0.243, exceeding the results obtained in prior studies using 'selfies'. The findings strongly support the possibility of predicting multidimensional personality profiles from static facial images using ANNs trained on large labelled datasets. Future research could investigate the relative contribution of morphological features of the face and other characteristics of facial images to predicting personality.

摘要

有充分的证据表明,人脸的形态和社会线索提供了人类个性和行为的信号。先前的研究已经发现,人工复合面部图像的特征与人专家对人格特质的归因之间存在关联。我们提出了新的发现,表明使用真实的静态面部图像,不仅可以对男性,而且可以对女性的更广泛的人格特征(所有大五人格特征)进行统计学上显著的预测。志愿者参与者(N=12447)提供了他们的面部照片(31367 张图像)并完成了大五人格特质的自我报告量表。我们在大型标记数据集上训练了级联人工神经网络(ANNs),以预测自我报告的大五分数。在观察到的和预测的人格分数之间发现了最高的相关性,对于尽责性(男性为 0.360,女性为 0.335),平均效应大小为 0.243,超过了先前使用“自拍”进行研究的结果。这些发现有力地支持了使用经过大型标记数据集训练的 ANN 从静态面部图像预测多维人格档案的可能性。未来的研究可以探讨面部形态特征和面部图像的其他特征对预测人格的相对贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验