Suppr超能文献

压力超负荷左心室机电模型的个性化:Windkessel 型后负荷模型的拟合。

Personalization of electro-mechanical models of the pressure-overloaded left ventricle: fitting of Windkessel-type afterload models.

机构信息

Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University Graz, Graz, Austria.

Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190342. doi: 10.1098/rsta.2019.0342. Epub 2020 May 25.

Abstract

Computer models of left ventricular (LV) electro-mechanics (EM) show promise as a tool for assessing the impact of increased afterload upon LV performance. However, the identification of unique afterload model parameters and the personalization of EM LV models remains challenging due to significant clinical input uncertainties. Here, we personalized a virtual cohort of  = 17 EM LV models under pressure overload conditions. A global-local optimizer was developed to uniquely identify parameters of a three-element Windkessel (Wk3) afterload model. The sensitivity of Wk3 parameters to input uncertainty and of the EM LV model to Wk3 parameter uncertainty was analysed. The optimizer uniquely identified Wk3 parameters, and outputs of the personalized EM LV models showed close agreement with clinical data in all cases. Sensitivity analysis revealed a strong dependence of Wk3 parameters on input uncertainty. However, this had limited impact on outputs of EM LV models. A unique identification of Wk3 parameters from clinical data appears feasible, but it is sensitive to input uncertainty, thus depending on accurate invasive measurements. By contrast, the EM LV model outputs were less sensitive, with errors of less than 8.14% for input data errors of 10%, which is within the bounds of clinical data uncertainty. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.

摘要

计算机左心室(LV)机电(EM)模型有望成为评估后负荷增加对 LV 性能影响的工具。然而,由于存在显著的临床输入不确定性,因此确定独特的后负荷模型参数并对 EM LV 模型进行个性化处理仍然具有挑战性。在这里,我们根据压力超负荷条件对  = 17 个 EM LV 模型进行了个性化处理。开发了一种全局-局部优化器,以唯一确定三元件 Windkessel(Wk3)后负荷模型的参数。分析了 Wk3 参数对输入不确定性的敏感性以及 EM LV 模型对 Wk3 参数不确定性的敏感性。优化器可以唯一地识别 Wk3 参数,并且个性化 EM LV 模型的输出在所有情况下都与临床数据非常吻合。敏感性分析表明,Wk3 参数强烈依赖于输入不确定性。然而,这对 EM LV 模型的输出影响有限。从临床数据中唯一地识别 Wk3 参数似乎是可行的,但它对输入不确定性很敏感,因此取决于准确的侵入性测量。相比之下,EM LV 模型的输出不太敏感,对于输入数据误差为 10%的误差小于 8.14%,这在临床数据不确定性的范围内。本文是主题为“心脏和心血管建模与仿真中的不确定性量化”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e05/7287328/9c7acb1d6d5a/rsta20190342-g2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验