Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA.
Mol Brain. 2020 May 25;13(1):81. doi: 10.1186/s13041-020-00603-7.
Glaucoma is the leading cause of irreversible vision loss. Ocular hypertension is a major risk factor for glaucoma and recent work has demonstrated critical early neuroinflammatory insults occur in the optic nerve head following ocular hypertension. Microglia and infiltrating monocytes are likely candidates to drive these neuroinflammatory insults. However, the exact molecular identity / transcriptomic profile of microglia following ocular hypertensive insults is unknown. To elucidate the molecular identity of microglia after long-term exposure to ocular hypertension, we used a mouse model of glaucoma (DBA/2 J). We performed RNA-sequencing of microglia mRNA from the optic nerve head at a time point following ocular hypertensive insults, but preceding detectable neurodegeneration (with microglia identified as being CD45/CD11b/CD11c). Furthermore, RNA-sequencing was performed on optic nerve head microglia from mice treated with radiation therapy, a potent therapy preventing neuroinflammatory insults. Transcriptomic profiling of optic nerve head microglia mRNA identifies metabolic priming with marked changes in mitochondrial gene expression, and changes to phagocytosis, inflammatory, and sensome pathways. The data predict that many functions of microglia that help maintain tissue homeostasis are affected. Comparative analysis of these data with data from previously published whole optic nerve head tissue or monocyte-only samples from DBA/2 J mice demonstrate that many of the neuroinflammatory signatures in these data sets arise from infiltrating monocytes and not reactive microglia. Finally, our data demonstrate that prophylactic radiation therapy of DBA/2 J mice potently abolishes these microglia metabolic transcriptomic changes at the same time points. Together, our data provide a unique resource for the community to help drive further hypothesis generation and testing in glaucoma.
青光眼是不可逆视力丧失的主要原因。眼内高压是青光眼的一个主要危险因素,最近的研究表明,眼内高压后视神经头部会发生关键的早期神经炎症损伤。小胶质细胞和浸润的单核细胞可能是引发这些神经炎症损伤的候选者。然而,眼内高压损伤后小胶质细胞的确切分子特征/转录组谱尚不清楚。为了阐明长期暴露于眼内高压后小胶质细胞的分子特征,我们使用了一种青光眼小鼠模型(DBA/2J)。我们在眼内高压损伤后但在可检测到神经退行性变之前(小胶质细胞被鉴定为 CD45/CD11b/CD11c),对视神经头部的小胶质细胞的 mRNA 进行了 RNA 测序。此外,我们对接受放射治疗的小鼠的视神经头部小胶质细胞进行了 RNA 测序,放射治疗是一种预防神经炎症损伤的有效治疗方法。视神经头部小胶质细胞 mRNA 的转录组分析确定了代谢启动,线粒体基因表达发生显著变化,吞噬作用、炎症和感觉通路发生变化。这些数据表明,小胶质细胞帮助维持组织内稳态的许多功能都受到了影响。将这些数据与以前发表的来自 DBA/2J 小鼠的整个视神经头部组织或单核细胞的数据集进行比较分析表明,这些数据集中的许多神经炎症特征来自浸润的单核细胞,而不是反应性小胶质细胞。最后,我们的数据表明,预防性放射治疗 DBA/2J 小鼠在相同的时间点可以有效地消除小胶质细胞的这些代谢转录组变化。总之,我们的数据为社区提供了一个独特的资源,有助于进一步推动青光眼的假说生成和验证。