Suppr超能文献

通过聚焦氦离子束诱导沉积使用铂前驱体直接写入3D纳米级网状物体

Direct Write of 3D Nanoscale Mesh Objects with Platinum Precursor via Focused Helium Ion Beam Induced Deposition.

作者信息

Belianinov Alex, Burch Matthew J, Ievlev Anton, Kim Songkil, Stanford Michael G, Mahady Kyle, Lewis Brett B, Fowlkes Jason D, Rack Philip D, Ovchinnikova Olga S

机构信息

Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

School of Mechanical Engineering, Pusan National University, Busan 46241, Korea.

出版信息

Micromachines (Basel). 2020 May 22;11(5):527. doi: 10.3390/mi11050527.

Abstract

The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques.

摘要

下一代光学、电子、生物和传感设备以及平台将不可避免地把其架构扩展到三维空间以增强功能。在聚焦离子束诱导沉积(FIBID)中,氦气场离子源可与有机金属前驱体气体一起使用,以三维方式制造纳米级结构,与聚焦电子束诱导沉积(FEBID)、传统液态金属源FIBID或其他增材制造技术相比,具有更高的精度和更小的临界尺寸。在这项工作中,我们报告了束流、驻留时间和像素间距对纳米级三维网格物体的所得线段和角度生长的影响。我们注意到了微妙的束流加热效应,它会影响线段角度和特征尺寸。此外,我们通过氦离子显微镜实验和蒙特卡罗模拟研究了三维FIBID过程中材料沉积和溅射的竞争。我们的结果显示了最大尺寸约为300纳米的复杂三维网格结构,其单个特征在半高宽(FWHM)处小至16纳米。这些组件可以在几分钟内完成,其基础制造技术与现有的光刻技术兼容,这表明了一条将FIBID与成熟的纳米制造技术集成的高通量途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b432/7281202/918a79e8bf63/micromachines-11-00527-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验