Suppr超能文献

基于图像的液滴微流控单细胞分选自动化。

Image-Based Single Cell Sorting Automation in Droplet Microfluidics.

机构信息

Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, EH14 4AS, United Kingdom.

Imperial College London, Department of Bioengineering, London, SW7 2AZ, United Kingdom.

出版信息

Sci Rep. 2020 May 26;10(1):8736. doi: 10.1038/s41598-020-65483-2.

Abstract

The recent boom in single-cell omics has brought researchers one step closer to understanding the biological mechanisms associated with cell heterogeneity. Rare cells that have historically been obscured by bulk measurement techniques are being studied by single cell analysis and providing valuable insight into cell function. To support this progress, novel upstream capabilities are required for single cell preparation for analysis. Presented here is a droplet microfluidic, image-based single-cell sorting technique that is flexible and programmable. The automated system performs real-time dual-camera imaging (brightfield & fluorescent), processing, decision making and sorting verification. To demonstrate capabilities, the system was used to overcome the Poisson loading problem by sorting for droplets containing a single red blood cell with 85% purity. Furthermore, fluorescent imaging and machine learning was used to load single K562 cells amongst clusters based on their instantaneous size and circularity. The presented system aspires to replace manual cell handling techniques by translating expert knowledge into cell sorting automation via machine learning algorithms. This powerful technique finds application in the enrichment of single cells based on their micrographs for further downstream processing and analysis.

摘要

单细胞组学的最新繁荣使研究人员更接近于理解与细胞异质性相关的生物学机制。单细胞分析正在研究历史上被批量测量技术所掩盖的稀有细胞,并为细胞功能提供了有价值的见解。为了支持这一进展,需要用于单细胞分析的新型上游单细胞制备能力。本文介绍了一种基于液滴微流控的、基于图像的单细胞分选技术,该技术具有灵活性和可编程性。该自动化系统执行实时双相机成像(明场和荧光)、处理、决策和分选验证。为了展示该系统的功能,该系统通过对含有 85%纯度单个红细胞的液滴进行分选,克服了泊松加载问题。此外,荧光成像和机器学习被用于根据其瞬时大小和圆度对单个 K562 细胞进行聚类加载。所提出的系统旨在通过将专家知识转化为基于机器学习算法的细胞分选自动化来替代手动细胞处理技术。这项强大的技术发现了基于其显微图像对单细胞进行富集的应用,以便进一步进行下游处理和分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验