Suppr超能文献

用于成像流式细胞术的高效免校准颜色补偿算法

Highly Efficient Calibration-Free Color Compensation Algorithm for Imaging Flow Cytometry.

作者信息

Zhou Ziqi, Lai Zhaoyu, Tang Rui, Chen Xinyu, Qu Yunjia, Xia Lin, George Micayla, Munoz Adonary, Zhou Minhong, Tai Yu-Chen, Wang Yingxiao, Cang Hu, Lo Yu-Hwa

机构信息

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA.

NanoCellect Biomedical Inc., San Diego, California, USA.

出版信息

Cytometry A. 2025 May;107(5):309-320. doi: 10.1002/cyto.a.24931. Epub 2025 Apr 9.

Abstract

As an emerging platform gaining significant attention from the biomedical community, multiplexed fluorescent imaging from imaging flow cytometry enables simultaneous detection of numerous biological targets within a single cell. Due to the spectral overlap, signals from one fluorophore can bleed into other detection channels, leading to spillover artifacts, which cause erroneous results and false discoveries. Existing color compensation algorithms use special samples to calibrate the fluorophores individually, a time-consuming and laborious process that is cumbersome and hard to scale. While recent developments in calibration-free algorithms produce promising results in multi-color microscope images, these algorithms, when applied to single-cell images with all the fluorophores within a small and constrained area, tend to cause overcorrection by treating real signals as crosstalk and triggering stability problems during the iterative computation process. Here we demonstrate a simple and intuitive algorithm that greatly reduces overcorrection and is computationally efficient. While designed for imaging flow cytometers, our calibration-free crosstalk removal algorithm can be readily applied to microscopy as well. We have validated its effectiveness on various datasets, including simulated cell images, 2D and 3D imaging flow cytometry images, and microscopic images. Our algorithm offers an effective solution for multi-parameter single-cell images where channels are often both spectrally and spatially overlapped within the limited area of a single cell.

摘要

作为一个正获得生物医学界广泛关注的新兴平台,成像流式细胞术的多重荧光成像能够在单个细胞内同时检测众多生物靶点。由于光谱重叠,一种荧光团发出的信号可能会渗入其他检测通道,导致溢出伪影,从而产生错误结果和假阳性发现。现有的颜色补偿算法使用特殊样本对荧光团进行单独校准,这是一个耗时费力的过程,既繁琐又难以扩展。虽然无校准算法的最新进展在多色显微镜图像中取得了有前景的结果,但这些算法应用于荧光团都在小而受限区域内的单细胞图像时,往往会将真实信号当作串扰进行过度校正,并在迭代计算过程中引发稳定性问题。在此,我们展示了一种简单直观的算法,它能大幅减少过度校正且计算效率高。虽然该算法是为成像流式细胞仪设计的,但我们的无校准串扰去除算法也可轻松应用于显微镜成像。我们已在各种数据集上验证了其有效性,包括模拟细胞图像、二维和三维成像流式细胞术图像以及显微镜图像。对于多参数单细胞图像,在单个细胞的有限区域内通道通常在光谱和空间上都存在重叠,我们的算法提供了一种有效的解决方案。

相似文献

1
Highly Efficient Calibration-Free Color Compensation Algorithm for Imaging Flow Cytometry.
Cytometry A. 2025 May;107(5):309-320. doi: 10.1002/cyto.a.24931. Epub 2025 Apr 9.
2
Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images.
PLoS One. 2018 May 1;13(5):e0193267. doi: 10.1371/journal.pone.0193267. eCollection 2018.
3
Multiplexed Spectral Imaging of 120 Different Fluorescent Labels.
PLoS One. 2016 Jul 8;11(7):e0158495. doi: 10.1371/journal.pone.0158495. eCollection 2016.
4
Single cell analysis using surface enhanced Raman scattering (SERS) tags.
Methods. 2012 Jul;57(3):272-9. doi: 10.1016/j.ymeth.2012.03.024. Epub 2012 Apr 4.
6
Color compensation of multicolor fish images.
IEEE Trans Med Imaging. 2009 Jan;28(1):129-36. doi: 10.1109/TMI.2008.928177.
7
H-EM: An algorithm for simultaneous cell diameter and intensity quantification in low-resolution imaging cytometry.
PLoS One. 2019 Sep 12;14(9):e0222265. doi: 10.1371/journal.pone.0222265. eCollection 2019.
9
Frequency-Encoded Multicolor Fluorescence Imaging with Single-Photon-Counting Color-Blind Detection.
Biophys J. 2018 Aug 21;115(4):725-736. doi: 10.1016/j.bpj.2018.07.008. Epub 2018 Jul 12.
10
Real-time computation of subdiffraction-resolution fluorescence images.
J Microsc. 2010 Jan;237(1):12-22. doi: 10.1111/j.1365-2818.2009.03287.x.

本文引用的文献

1
Mosaic-PICASSO: accurate crosstalk removal for multiplex fluorescence imaging.
Bioinformatics. 2024 Jan 2;40(1). doi: 10.1093/bioinformatics/btad784.
3
Companion diagnostic requirements for spatial biology using multiplex immunofluorescence and multispectral imaging.
Front Mol Biosci. 2023 Feb 9;10:1051491. doi: 10.3389/fmolb.2023.1051491. eCollection 2023.
5
Low-latency label-free image-activated cell sorting using fast deep learning and AI inferencing.
Biosens Bioelectron. 2023 Jan 15;220:114865. doi: 10.1016/j.bios.2022.114865. Epub 2022 Nov 7.
8
A high-throughput technique to map cell images to cell positions using a 3D imaging flow cytometer.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2118068119.
10
Adjacent Cell Marker Lateral Spillover Compensation and Reinforcement for Multiplexed Images.
Front Immunol. 2021 Jul 5;12:652631. doi: 10.3389/fimmu.2021.652631. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验