Suppr超能文献

神经网络和聚类分析在乳腺癌患者中医证型鉴别中的应用

Application of Neural Network and Cluster Analyses to Differentiate TCM Patterns in Patients With Breast Cancer.

作者信息

Huang Wei-Te, Hung Hao-Hsiu, Kao Yi-Wei, Ou Shi-Chen, Lin Yu-Chuan, Cheng Wei-Zen, Yen Zi-Rong, Li Jian, Chen Mingchih, Shia Ben-Chang, Huang Sheng-Teng

机构信息

Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.

Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan.

出版信息

Front Pharmacol. 2020 May 8;11:670. doi: 10.3389/fphar.2020.00670. eCollection 2020.

Abstract

BACKGROUND AND PURPOSE

Pattern differentiation is a critical element of the prescription process for Traditional Chinese Medicine (TCM) practitioners. Application of advanced machine learning techniques will enhance the effectiveness of TCM in clinical practice. The aim of this study is to explore the relationships between clinical features and TCM patterns in breast cancer patients.

METHODS

The dataset of breast cancer patients receiving TCM treatment was recruited from a single medical center. We utilized a neural network model to standardize terminologies and address TCM pattern differentiation in breast cancer cases. Cluster analysis was applied to classify the clinical features in the breast cancer patient dataset. To evaluate the performance of the proposed method, we further compared the TCM patterns to therapeutic principles of Chinese herbal medication in Taiwan.

RESULTS

A total of 2,738 breast cancer cases were recruited and standardized. They were divided into 5 groups according to clinical features cluster analysis. The pattern differentiation model revealed that liver-gallbladder dampness-heat was the primary TCM pattern identified in patients. The main therapeutic goals of the top 10 Chinese herbal medicines prescribed for breast cancer patients were to clear heat, drain dampness, and detoxify. These results demonstrated that the neural network successfully identified patterns from a dataset similar to the prescriptions of TCM clinical practitioners.

CONCLUSION

This is the first study using machine-learning methodology to standardize and analyze TCM electronic medical records. The patterns revealed by the analyses were highly correlated with the therapeutic principles of TCM practitioners. Machine learning technology could assist TCM practitioners to comprehensively differentiate patterns and identify effective Chinese herbal medicine treatments in clinical practice.

摘要

背景与目的

辨证是中医从业者开方过程中的关键环节。应用先进的机器学习技术将提高中医在临床实践中的有效性。本研究旨在探讨乳腺癌患者临床特征与中医证型之间的关系。

方法

从单一医疗中心招募接受中医治疗的乳腺癌患者数据集。我们利用神经网络模型对术语进行标准化,并解决乳腺癌病例的中医辨证问题。应用聚类分析对乳腺癌患者数据集中的临床特征进行分类。为了评估所提出方法的性能,我们进一步将中医证型与台湾地区中药治疗原则进行比较。

结果

共招募并标准化了 2738 例乳腺癌病例。根据临床特征聚类分析将它们分为 5 组。辨证模型显示,肝胆湿热是患者中主要的中医证型。为乳腺癌患者开出的前 10 味中药的主要治疗目标是清热、利湿、解毒。这些结果表明,神经网络成功地从类似于中医临床从业者处方的数据集中识别出证型。

结论

这是第一项使用机器学习方法对中医电子病历进行标准化和分析的研究。分析揭示的证型与中医从业者的治疗原则高度相关。机器学习技术可以帮助中医从业者在临床实践中全面辨证并确定有效的中药治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf4/7227602/173a09a0a68a/fphar-11-00670-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验