Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Nano Lett. 2020 Jul 8;20(7):5383-5390. doi: 10.1021/acs.nanolett.0c01729. Epub 2020 Jun 8.
Single cell manipulation is important in biosensing, biorobotics, and quantitative cell analysis. Although microbeads, droplets, and microrobots have been developed previously, it is still challenging to simultaneously excise, capture, and manipulate single cells in a biocompatible manner. Here, we describe untethered single cell grippers, that can be remotely guided and actuated on-demand to actively capture or excise individual or few cells. We describe a novel molding method to micropattern a thermally responsive wax layer for biocompatible motion actuation. The multifingered grippers derive their energy from the triggered release of residual differential stress in bilayer hinges composed of silicon oxides. A magnetic layer enables remote guidance through narrow conduits and fixed tissue sections . Our results provide an important advance in high-throughput single cell scale biopsy tools important to lab-on-a-chip devices, microrobotics, and minimally invasive surgery.
单细胞操作在生物传感、生物机器人和定量细胞分析中非常重要。虽然之前已经开发出了微珠、液滴和微型机器人,但仍然难以以生物兼容的方式同时进行单细胞的切割、捕获和操作。在这里,我们描述了一种无束缚的单细胞夹具,可以远程引导和按需致动,以主动捕获或切除单个或少量细胞。我们描述了一种新的模塑方法,用于微图案化热响应蜡层以进行生物相容的运动致动。多指夹具从由氧化硅组成的双层铰链中剩余的差应变的触发释放中获得能量。磁性层可通过狭窄的导管和固定的组织部分进行远程引导。我们的研究结果为高通量单细胞规模活检工具提供了重要进展,这些工具对于片上实验室设备、微机器人和微创手术非常重要。