Fromm Davida, MacWhinney Brian, Thompson Cynthia K
Department of Psychology, Carnegie Mellon University, Pittsburgh, PA.
Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL.
J Speech Lang Hear Res. 2020 Jun 22;63(6):1835-1844. doi: 10.1044/2020_JSLHR-19-00267. Epub 2020 May 28.
Purpose Analysis of spontaneous speech samples is important for determining patterns of language production in people with aphasia. To accomplish this, researchers and clinicians can use either hand coding or computer-automated methods. In a comparison of the two methods using the hand-coding NNLA (Northwestern Narrative Language Analysis) and automatic transcript analysis by CLAN (Computerized Language Analysis), Hsu and Thompson (2018) found good agreement for 32 of 51 linguistic variables. The comparison showed little difference between the two methods for coding most general (i.e., utterance length, rate of speech production), lexical, and morphological measures. However, the NNLA system coded grammatical measures (i.e., sentence and verb argument structure) that CLAN did not. Because of the importance of quantifying these aspects of language, the current study sought to implement a new, single, composite CLAN command for the full set of 51 NNLA codes and to evaluate its reliability for coding aphasic language samples. Method Eighteen manually coded NNLA transcripts from eight people with aphasia and 10 controls were converted into CHAT (Codes for the Human Analysis of Talk) files for compatibility with CLAN commands. Rules from the NNLA manual were translated into programmed rules for CLAN computation of lexical, morphological, utterance-level, sentence-level, and verb argument structure measures. Results The new C-NNLA (CLAN command to compute the full set of NNLA measures) program automatically computes 50 of the 51 NNLA measures and generates the results in a summary spreadsheet. The only measure it does not compute is the number of verb particles. Statistical tests revealed no significant difference between C-NNLA results and those generated by manual coding for 44 of the 50 measures. C-NNLA results were not comparable to manual coding for the six verb argument measures. Conclusion Clinicians and researchers can use the automatic C-NNLA to analyze important variables required for quantification of grammatical deficits in aphasia in a way that is fast, replicable, and accessible without extensive linguistic knowledge and training.
目的 对自发言语样本进行分析对于确定失语症患者的语言生成模式很重要。为实现这一目的,研究人员和临床医生可以使用手工编码或计算机自动化方法。在一项使用手工编码的NNLA(西北叙事语言分析)和CLAN(计算机化语言分析)自动转录分析这两种方法的比较中,许和汤普森(2018年)发现,51个语言变量中有32个变量二者的一致性良好。该比较表明,在对大多数一般指标(即话语长度、言语产生速率)、词汇和形态学指标进行编码时,两种方法之间几乎没有差异。然而,NNLA系统对CLAN未编码的语法指标(即句子和动词论元结构)进行了编码。由于量化语言这些方面的重要性,本研究试图为全套51个NNLA代码实现一个新的、单一的复合CLAN命令,并评估其对失语症语言样本进行编码的可靠性。方法 将来自8名失语症患者和10名对照的18份手工编码的NNLA转录本转换为CHAT(谈话人类分析代码)文件,以便与CLAN命令兼容。将NNLA手册中的规则翻译成用于CLAN计算词汇、形态、话语层面、句子层面和动词论元结构指标的编程规则。结果 新的C-NNLA(计算全套NNLA指标的CLAN命令)程序自动计算51个NNLA指标中的50个,并在汇总电子表格中生成结果。它唯一不计算的指标是动词小品词的数量。统计测试显示,在50个指标中的44个指标上,C-NNLA结果与手工编码生成的结果之间没有显著差异。对于六个动词论元指标,C-NNLA结果与手工编码不可比。结论 临床医生和研究人员可以使用自动C-NNLA以一种快速、可重复且无需广泛语言知识和培训即可使用的方式,分析量化失语症语法缺陷所需的重要变量。