Suppr超能文献

复杂系统研究对动物种群生态学与进化的启示。

Insights from the study of complex systems for the ecology and evolution of animal populations.

作者信息

Fisher David N, Pruitt Jonathan N

机构信息

Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada.

出版信息

Curr Zool. 2020 Feb;66(1):1-14. doi: 10.1093/cz/zoz016. Epub 2019 Apr 23.

Abstract

Populations of animals comprise many individuals, interacting in multiple contexts, and displaying heterogeneous behaviors. The interactions among individuals can often create population dynamics that are fundamentally deterministic yet display unpredictable dynamics. Animal populations can, therefore, be thought of as complex systems. Complex systems display properties such as nonlinearity and uncertainty and show emergent properties that cannot be explained by a simple sum of the interacting components. Any system where entities compete, cooperate, or interfere with one another may possess such qualities, making animal populations similar on many levels to complex systems. Some fields are already embracing elements of complexity to help understand the dynamics of animal populations, but a wider application of complexity science in ecology and evolution has not occurred. We review here how approaches from complexity science could be applied to the study of the interactions and behavior of individuals within animal populations and highlight how this way of thinking can enhance our understanding of population dynamics in animals. We focus on 8 key characteristics of complex systems: hierarchy, heterogeneity, self-organization, openness, adaptation, memory, nonlinearity, and uncertainty. For each topic we discuss how concepts from complexity theory are applicable in animal populations and emphasize the unique insights they provide. We finish by outlining outstanding questions or predictions to be evaluated using behavioral and ecological data. Our goal throughout this article is to familiarize animal ecologists with the basics of each of these concepts and highlight the new perspectives that they could bring to variety of subfields.

摘要

动物种群由许多个体组成,它们在多种环境中相互作用,并表现出不同的行为。个体之间的相互作用往往会产生种群动态,这些动态从根本上说是确定性的,但却表现出不可预测的动态变化。因此,动物种群可以被视为复杂系统。复杂系统具有非线性和不确定性等特性,并表现出一些涌现特性,这些特性无法通过相互作用的组成部分的简单相加来解释。任何实体之间存在竞争、合作或相互干扰的系统都可能具备这些特质,这使得动物种群在许多层面上与复杂系统相似。一些领域已经在采用复杂性的元素来帮助理解动物种群的动态,但复杂性科学在生态学和进化领域的更广泛应用尚未出现。我们在此回顾复杂性科学的方法如何应用于研究动物种群内个体的相互作用和行为,并强调这种思维方式如何能够增进我们对动物种群动态的理解。我们聚焦于复杂系统的8个关键特征:层级性、异质性、自组织性、开放性、适应性、记忆性、非线性和不确定性。对于每个主题,我们讨论复杂性理论中的概念如何适用于动物种群,并强调它们所提供的独特见解。我们通过概述有待使用行为和生态数据进行评估的突出问题或预测来结束本文。在整篇文章中,我们的目标是使动物生态学家熟悉这些概念中的每一个的基础知识,并突出它们可能为各个子领域带来的新视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdac/7245006/8af153579493/zoz016f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验